Deep Learning-based Dynamic PET Intra-frame Motion Correction and Integration with Inter-frame Motion Estimation
Guo X, Tsai Y, Liu Q, Guo L, Valadez G, Dvornek N, Liu C. Deep Learning-based Dynamic PET Intra-frame Motion Correction and Integration with Inter-frame Motion Estimation. 2024, 00: 1-1. DOI: 10.1109/nss/mic/rtsd57108.2024.10657268.Peer-Reviewed Original ResearchIntra-frame motionMotion correctionGated imagesLearning-based registration approachesDeep learning-based worksInter-frame motion estimationConventional image registrationLearning-based worksImage registrationMotion estimation processMotion estimation frameworkInter-frame registrationRespiratory gatingImprove image sharpnessInter-frameInference timeMotion estimationReconstructed framesDynamic PET datasetsGeneralization abilityPET imagingConventional registrationDynamic PET imagesImprove image qualityComputational inefficiencyPatlak-Guided Self-Supervised Learning for Dynamic PET Denoising
Liu Q, Guo X, Tsai Y, Gallezot J, Chen M, Guo L, Xie H, Pucar D, Young C, Panin V, Carson R, Liu C. Patlak-Guided Self-Supervised Learning for Dynamic PET Denoising. 2024, 00: 1-2. DOI: 10.1109/nss/mic/rtsd57108.2024.10655866.Peer-Reviewed Original ResearchPre-trained modelsSelf-supervised learning methodSuperior noise reductionNoise reductionDynamic framesImage quality improvementUpsampling blockSignal-to-noise ratioWeight initializationWeak supervisionDynamic PET datasetsEnhanced noise reductionUNet modelLearning methodsTraining schemeTemporal dataStatic imagesDenoisingReconstruction methodPET datasetsLesion signal-to-noise ratioSize constraintsLesion SNRImagesRecon