2023
Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants
Moriyama M, Lucas C, Monteiro V, Initiative Y, Iwasaki A, Chen N, Breban M, Hahn A, Pham K, Koch T, Chaguza C, Tikhonova I, Castaldi C, Mane S, De Kumar B, Ferguson D, Kerantzas N, Peaper D, Landry M, Schulz W, Vogels C, Grubaugh N. Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2221652120. PMID: 37036977, PMCID: PMC10120007, DOI: 10.1073/pnas.2221652120.Peer-Reviewed Original ResearchConceptsMHC-I expressionBreakthrough infectionsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantsMajor histocompatibility complex class I expressionCell-mediated immunityInfluenza virus infectionSARS-CoV-2 VOCsMHC-I upregulationClass I expressionSARS-CoV-2T cell recognitionVirus infectionMHC II expressionSpike proteinEnhanced inhibitionInfectionCell recognitionCommon mutationsReinfectionE proteinAntibodiesViral genesSubvariantsExpressionAccelerated SARS-CoV-2 intrahost evolution leading to distinct genotypes during chronic infection
Chaguza C, Hahn A, Petrone M, Zhou S, Ferguson D, Breban M, Pham K, Peña-Hernández M, Castaldi C, Hill V, Initiative Y, Billig K, Earnest R, Fauver J, Kalinch C, Kerantzas N, Koch T, De Kumar B, Landry M, Ott I, Peaper D, Tikhonova I, Vogels C, Schulz W, Swanstrom R, Roberts S, Grubaugh N. Accelerated SARS-CoV-2 intrahost evolution leading to distinct genotypes during chronic infection. Cell Reports Medicine 2023, 4: 100943. PMID: 36791724, PMCID: PMC9906997, DOI: 10.1016/j.xcrm.2023.100943.Peer-Reviewed Original ResearchConceptsChronic infectionEvolutionary ratesGenetic diversityIntrahost evolutionDistinct genotypesHigher viral genome copiesVirus evolutionary ratesSARS-CoV-2 evolutionUntreated chronic infectionAdvantageous mutationsNucleotide substitutionsViral genome copiesDivergent variantsInfection hypothesisVariant emergenceViral populationsInfectious virusInfectionHallmark changesGenome copiesDifferent genotypesDiversityGenotypesTemporal dynamicsEvolution
2022
Rapid emergence of SARS-CoV-2 Omicron variant is associated with an infection advantage over Delta in vaccinated persons
Chaguza C, Coppi A, Earnest R, Ferguson D, Kerantzas N, Warner F, Young HP, Breban MI, Billig K, Koch RT, Pham K, Kalinich CC, Ott IM, Fauver JR, Hahn AM, Tikhonova IR, Castaldi C, De Kumar B, Pettker CM, Warren JL, Weinberger DM, Landry ML, Peaper DR, Schulz W, Vogels CBF, Grubaugh ND. Rapid emergence of SARS-CoV-2 Omicron variant is associated with an infection advantage over Delta in vaccinated persons. Med 2022, 3: 325-334.e4. PMID: 35399324, PMCID: PMC8983481, DOI: 10.1016/j.medj.2022.03.010.Peer-Reviewed Original ResearchConceptsSpike gene target failureSARS-CoV-2 Omicron variantPositivity rateOmicron variantOmicron infectionVaccine dosesVaccine-induced immunityNumber of dosesTest positivity rateOdds of infectionSARS-CoV-2Significant reductionDominant Delta variantUnvaccinated personsVaccination statusHigher oddsDelta variantInfectionVaccine manufacturersDisease controlVirus copiesDosesPCR testOddsTarget failureComparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA
Earnest R, Uddin R, Matluk N, Renzette N, Turbett SE, Siddle KJ, Loreth C, Adams G, Tomkins-Tinch CH, Petrone ME, Rothman JE, Breban MI, Koch RT, Billig K, Fauver JR, Vogels CBF, Bilguvar K, De Kumar B, Landry ML, Peaper DR, Kelly K, Omerza G, Grieser H, Meak S, Martha J, Dewey HB, Kales S, Berenzy D, Carpenter-Azevedo K, King E, Huard RC, Novitsky V, Howison M, Darpolor J, Manne A, Kantor R, Smole SC, Brown CM, Fink T, Lang AS, Gallagher GR, Pitzer VE, Sabeti PC, Gabriel S, MacInnis BL, Team N, Altajar A, DeJesus A, Brito A, Watkins A, Muyombwe A, Blumenstiel B, Neal C, Kalinich C, Liu C, Loreth C, Castaldi C, Pearson C, Bernard C, Nolet C, Ferguson D, Buzby E, Laszlo E, Reagan F, Vicente G, Rooke H, Munger H, Johnson H, Tikhonova I, Ott I, Razeq J, Meldrim J, Brown J, Wang J, Vostok J, Beauchamp J, Grimsby J, Hall J, Messer K, Larkin K, Vernest K, Madoff L, Green L, Webber L, Gagne L, Ulcena M, Ray M, Fisher M, Barter M, Lee M, DeFelice M, Cipicchio M, Smith N, Lennon N, Fitzgerald N, Kerantzas N, Hui P, Harrington R, Downing R, Haye R, Lynch R, Anderson S, Hennigan S, English S, Cofsky S, Clancy S, Mane S, Ash S, Baez S, Fleming S, Murphy S, Chaluvadi S, Alpert T, Rivard T, Schulz W, Mandese Z, Tewhey R, Adams M, Park D, Lemieux J, Grubaugh N. Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA. Cell Reports Medicine 2022, 3: 100583. PMID: 35480627, PMCID: PMC8913280, DOI: 10.1016/j.xcrm.2022.100583.Peer-Reviewed Original ResearchConceptsEnhanced transmissibilitySARS-CoV-2 variant DeltaSARS-CoV-2 Delta variantViral RNA copiesPublic health programsAlpha infectionDelta infectionEffective reproductive numberDelta variantHealth programsVariant DeltaRNA copiesInfectionAlphaReproductive numberTransmissibilityEpidemiological dynamics
2021
Viral dynamics of acute SARS-CoV-2 infection and applications to diagnostic and public health strategies
Kissler SM, Fauver JR, Mack C, Olesen SW, Tai C, Shiue KY, Kalinich CC, Jednak S, Ott IM, Vogels CBF, Wohlgemuth J, Weisberger J, DiFiori J, Anderson DJ, Mancell J, Ho DD, Grubaugh ND, Grad YH. Viral dynamics of acute SARS-CoV-2 infection and applications to diagnostic and public health strategies. PLOS Biology 2021, 19: e3001333. PMID: 34252080, PMCID: PMC8297933, DOI: 10.1371/journal.pbio.3001333.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionViral RNA concentrationClearance phaseAcute SARS-CoV-2 infectionReverse transcription-PCR testingPeak viral concentrationPersistent viral RNAPositive PCR testTranscription-PCR testingViral proliferationPublic health strategiesRNA concentrationViral concentrationInfection stagesCycle threshold valuesAcute infectionAsymptomatic individualsTest turnaround timeSymptomatic individualsClinical measuresHealth strategiesPatient progressPCR testingInfectionViral dynamicsMOG-associated encephalitis following SARS-COV-2 infection
Peters J, Alhasan S, Vogels CBF, Grubaugh ND, Farhadian S, Longbrake EE. MOG-associated encephalitis following SARS-COV-2 infection. Multiple Sclerosis And Related Disorders 2021, 50: 102857. PMID: 33647592, PMCID: PMC7900751, DOI: 10.1016/j.msard.2021.102857.Peer-Reviewed Case Reports and Technical Notes
2020
Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2
Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, Warren JL, Geng B, Muenker MC, Moore AJ, Vogels CBF, Petrone ME, Ott IM, Lu P, Venkataraman A, Lu-Culligan A, Klein J, Earnest R, Simonov M, Datta R, Handoko R, Naushad N, Sewanan LR, Valdez J, White EB, Lapidus S, Kalinich CC, Jiang X, Kim DJ, Kudo E, Linehan M, Mao T, Moriyama M, Oh JE, Park A, Silva J, Song E, Takahashi T, Taura M, Weizman OE, Wong P, Yang Y, Bermejo S, Odio CD, Omer SB, Dela Cruz CS, Farhadian S, Martinello RA, Iwasaki A, Grubaugh ND, Ko AI. Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2. New England Journal Of Medicine 2020, 383: 1283-1286. PMID: 32857487, PMCID: PMC7484747, DOI: 10.1056/nejmc2016359.Peer-Reviewed Original ResearchImpact of Gut Bacteria on the Infection and Transmission of Pathogenic Arboviruses by Biting Midges and Mosquitoes
Möhlmann TWR, Vogels CBF, Göertz GP, Pijlman GP, ter Braak CJF, te Beest DE, Hendriks M, Nijhuis EH, Warris S, Drolet BS, van Overbeek L, Koenraadt CJM. Impact of Gut Bacteria on the Infection and Transmission of Pathogenic Arboviruses by Biting Midges and Mosquitoes. Microbial Ecology 2020, 80: 703-717. PMID: 32462391, PMCID: PMC7476999, DOI: 10.1007/s00248-020-01517-6.Peer-Reviewed Original ResearchConceptsAntibiotic treatmentGut bacteriaChikungunya virusInfection ratePathogenic arbovirusesInfectious blood mealAegypti mosquitoesGut bacterial communitiesResident gut bacteriaGut bacterial compositionSchmallenberg virusAedes aegypti mosquitoesArbovirus infectionViral pathogensVirusTreatmentBlood mealInfectionMidgut bacteriaArbovirus transmissionHealth of animalsMosquitoesArbovirusesZikaBacterial composition
2019
Subgenomic flavivirus RNA binds the mosquito DEAD/H-box helicase ME31B and determines Zika virus transmission by Aedes aegypti
Göertz GP, van Bree JWM, Hiralal A, Fernhout BM, Steffens C, Boeren S, Visser TM, Vogels CBF, Abbo SR, Fros JJ, Koenraadt CJM, van Oers MM, Pijlman GP. Subgenomic flavivirus RNA binds the mosquito DEAD/H-box helicase ME31B and determines Zika virus transmission by Aedes aegypti. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 19136-19144. PMID: 31488709, PMCID: PMC6754610, DOI: 10.1073/pnas.1905617116.Peer-Reviewed Original ResearchConceptsSubgenomic flavivirus RNAInfectious blood mealZika virusMosquito infectionWild-type Zika virusesFlavivirus RNAMosquito midgut barrierArthropod-borne flavivirusZika virus transmissionBlood mealGlobal human health threatMosquito cell culturesZIKV infectionMosquito salivaIntrathoracic injectionViral Small Interfering RNAsInfected mosquitoesViral titersAntiviral activityFlavivirus replicationFlavivirus transmissionMidgut barrierHealth threatInfectionInfected cells
2018
Conserved motifs in the hypervariable domain of chikungunya virus nsP3 required for transmission by Aedes aegypti mosquitoes
Göertz GP, Lingemann M, Geertsema C, Abma-Henkens MHC, Vogels CBF, Koenraadt CJM, van Oers MM, Pijlman GP. Conserved motifs in the hypervariable domain of chikungunya virus nsP3 required for transmission by Aedes aegypti mosquitoes. PLOS Neglected Tropical Diseases 2018, 12: e0006958. PMID: 30412583, PMCID: PMC6249005, DOI: 10.1371/journal.pntd.0006958.Peer-Reviewed Original ResearchConceptsCHIKV replicationChikungunya virusAedes aegypti mosquitoesMosquito cellsAegypti mosquitoesTransmission of CHIKVCHIKV infectionHypervariable domainMosquito salivaHost proteinsInfectionCHIKV mutantsChikungunya Virus nsP3Non-structural proteinsCHIKV nsP3Arthropod-borneEfficient infectionIntervention strategiesViral RNATransmission cycleMosquitoesFGDF motifsCellsMammalian cellsRich motif
2017
Virus interferes with host-seeking behaviour of mosquito
Vogels CBF, Fros JJ, Pijlman GP, van Loon JJA, Gort G, Koenraadt CJM. Virus interferes with host-seeking behaviour of mosquito. Journal Of Experimental Biology 2017, 220: 3598-3603. PMID: 28978641, DOI: 10.1242/jeb.164186.Peer-Reviewed Original Research
2016
Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature
Vogels CB, Fros JJ, Göertz GP, Pijlman GP, Koenraadt CJ. Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature. Parasites & Vectors 2016, 9: 393. PMID: 27388451, PMCID: PMC4937539, DOI: 10.1186/s13071-016-1677-0.Peer-Reviewed Original ResearchConceptsWest Nile virusVector competence studiesVector competenceMosquito midgut barrierNile virusInfectious blood mealCompetence studiesPipiens biotypesCulex pipiens biotypesViral titersSaliva samplesMidgut barrierInfectionBiotype pipiensBlood mealWNV presenceTitersOverall transmission rateVirusMosquitoesPipiens mosquitoesBiotype levelRisk assessmentPipiensMethodsWe
2015
West Nile Virus: High Transmission Rate in North-Western European Mosquitoes Indicates Its Epidemic Potential and Warrants Increased Surveillance
Fros JJ, Geertsema C, Vogels CB, Roosjen PP, Failloux AB, Vlak JM, Koenraadt CJ, Takken W, Pijlman GP. West Nile Virus: High Transmission Rate in North-Western European Mosquitoes Indicates Its Epidemic Potential and Warrants Increased Surveillance. PLOS Neglected Tropical Diseases 2015, 9: e0003956. PMID: 26225555, PMCID: PMC4520649, DOI: 10.1371/journal.pntd.0003956.Peer-Reviewed Original ResearchConceptsWest Nile virusEpidemic potentialLineage 1 West Nile VirusInfectious blood mealFurther epidemic spreadLineage 2 West Nile virusNeuroinvasive diseaseIntrathoracic injectionEuropean mosquitoesPathogenic flavivirusesInfection rateVirus activityLarge outbreakVirus disseminationWNV infection ratesNile virusWNV activityWNV lineagesBlood mealVector competenceInfectionCulex pipiens mosquitoesWNV transmissionEpidemic spreadDisease-free regions