1998
[11] Construction of single-ring and two-ring hybrid versions of bacterial chaperonin GroEL
Horwich A, Burston S, Rye H, Weissman J, Fenton W. [11] Construction of single-ring and two-ring hybrid versions of bacterial chaperonin GroEL. Methods In Enzymology 1998, 290: 141-146. PMID: 9534157, DOI: 10.1016/s0076-6879(98)90013-1.Peer-Reviewed Original ResearchConceptsBacterial chaperonin GroELGreen fluorescent proteinChaperonin GroELDouble-ring assemblyAddition of GroESDouble-ring complexesSingle-ring versionUnliganded GroELBacterial chaperoninsGroEL ringNeighboring subunitProtein foldsGroELEquatorial domainNonnative formsFluorescent proteinGroESNative stateNative formCentral channelCritical signalingSubunitsSignalingForm contactsNormal ATP
1993
Folding in vivo of bacterial cytoplasmic proteins: Role of GroEL
Horwich A, Low K, Fenton W, Hirshfield I, Furtak K. Folding in vivo of bacterial cytoplasmic proteins: Role of GroEL. Cell 1993, 74: 909-917. PMID: 8104102, DOI: 10.1016/0092-8674(93)90470-b.Peer-Reviewed Original ResearchMeSH KeywordsATP-Binding Cassette TransportersBacterial ProteinsBacteriophage lambdaCarrier ProteinsChaperonin 60Citrate (si)-SynthaseEscherichia coliEscherichia coli ProteinsHeat-Shock ProteinsKetoglutarate Dehydrogenase ComplexMaltoseMaltose-Binding ProteinsMethionineMonosaccharide Transport ProteinsOperonOrnithine CarbamoyltransferasePlasmidsPolyribonucleotide NucleotidyltransferasePromoter Regions, GeneticProtein BiosynthesisProtein FoldingProtein Sorting SignalsSequence DeletionTemperatureTransduction, GeneticConceptsCytoplasmic proteinsTemperature-sensitive lethal mutationBacterial cytoplasmic proteinsE. coli chaperonin GroELMaltose-binding proteinRole of GroELNative tertiary structureEssential genesChaperonin GroELBacterial cytoplasmMutant cellsLethal mutationsNonpermissive temperatureGenetic informationPolynucleotide phosphorylaseGeneral translationTertiary structureCitrate synthasePathways of transferKetoglutarate dehydrogenaseGeneral roleGroELNative conformationProteinTest proteins
1992
Two related genes encoding extremely hydrophobic proteins suppress a lethal mutation in the yeast mitochondrial processing enhancing protein.
West A, Clark D, Martin J, Neupert W, Hartl F, Horwich A. Two related genes encoding extremely hydrophobic proteins suppress a lethal mutation in the yeast mitochondrial processing enhancing protein. Journal Of Biological Chemistry 1992, 267: 24625-24633. PMID: 1447206, DOI: 10.1016/s0021-9258(18)35810-1.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceChromosomes, FungalDNA, FungalGenes, FungalGenes, LethalGenes, SuppressorGenotypeMitochondriaMolecular Sequence DataMutationOpen Reading FramesPeptidesPlasmidsProtein ConformationRestriction MappingSaccharomyces cerevisiaeSequence DeletionSequence Homology, Amino AcidSuppression, GeneticTemperatureConceptsProtein importHydrophobic proteinsNH2-terminal signal peptideYeast genomic libraryNonfermentable carbon sourcesProteins of mitochondriaMitochondrial membrane proteinPrecursor proteinHigh-copy plasmidMitochondrial processingProtein translocationGenomic libraryPEP geneGrowth defectChromosomal genesMembrane proteinsMitochondrial matrixSignal peptideGenetic suppressionLethal mutationsMitochondrial membraneDouble disruptionRelated genesSequence analysisProteolytic removal
1990
Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification
Summers J, Smith P, Horwich A. Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification. Journal Of Virology 1990, 64: 2819-2824. PMID: 2335817, PMCID: PMC249463, DOI: 10.1128/jvi.64.6.2819-2824.1990.Peer-Reviewed Original ResearchConceptsCccDNA synthesisEnvelope proteinVirus-mediated cell deathHepadnavirus envelope proteinsCircular DNA amplificationViral DNA synthesisWild-type virusWild typeViral envelope proteinsCell deathCircular DNAPrimary duck hepatocytesDNA synthesisProteinDNA amplificationPersistent infectionDuck hepatocytes
1989
Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria
Cheng M, Hartl F, Martin J, Pollock R, Kalousek F, Neuper W, Hallberg E, Hallberg R, Horwich A. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337: 620-625. PMID: 2645524, DOI: 10.1038/337620a0.Peer-Reviewed Original Research
1987
The ornithine transcarbamylase leader peptide directs mitochondrial import through both its midportion structure and net positive charge.
Horwich A, Kalousek F, Fenton W, Furtak K, Pollock R, Rosenberg L. The ornithine transcarbamylase leader peptide directs mitochondrial import through both its midportion structure and net positive charge. Journal Of Cell Biology 1987, 105: 669-677. PMID: 3624306, PMCID: PMC2114782, DOI: 10.1083/jcb.105.2.669.Peer-Reviewed Original ResearchImport and processing of human ornithine transcarbamoylase precursor by mitochondria from Saccharomyces cerevisiae.
Cheng M, Pollock R, Hendrick J, Horwich A. Import and processing of human ornithine transcarbamoylase precursor by mitochondria from Saccharomyces cerevisiae. Proceedings Of The National Academy Of Sciences Of The United States Of America 1987, 84: 4063-4067. PMID: 3295876, PMCID: PMC305022, DOI: 10.1073/pnas.84.12.4063.Peer-Reviewed Original ResearchConceptsMitochondrial membraneEnzymatic activityNH2-terminal leader peptideMitochondrial matrix fractionWild-type precursorS. cerevisiae strainMitochondrial importMammalian mitochondriaMature subunitSubunit precursorOperon promoterS. cerevisiaeSelective growth conditionsLeader peptideYeast cellsArtificial mutationsOTCase activityMatrix fractionOrnithine transcarbamoylaseCerevisiae strainSaccharomycesGrowth conditionsMatrix compartmentMitochondriaSubunits
1985
Arginine in the leader peptide is required for both import and proteolytic cleavage of a mitochondrial precursor.
Horwich A, Kalousek F, Rosenberg L. Arginine in the leader peptide is required for both import and proteolytic cleavage of a mitochondrial precursor. Proceedings Of The National Academy Of Sciences Of The United States Of America 1985, 82: 4930-4933. PMID: 3895227, PMCID: PMC390471, DOI: 10.1073/pnas.82.15.4930.Peer-Reviewed Original ResearchConceptsLeader peptideOrnithine transcarbamoylaseImport of precursorsMost mitochondrial proteinsMitochondrial matrix fractionOverall amino acid compositionMitochondrial matrix enzymeMitochondrial precursorsMitochondrial proteinsSubunit precursorAmino acid compositionBasic arginine residuesBasic residuesMatrix enzymeGlycine residueLarger precursorArginine residuesMatrix fractionIntact mitochondriaNH2-terminalDependent proteaseProteolytic cleavageTranscarbamoylaseResiduesMitochondriaA leader peptide is sufficient to direct mitochondrial import of a chimeric protein.
Horwich A, Kalousek F, Mellman I, Rosenberg L. A leader peptide is sufficient to direct mitochondrial import of a chimeric protein. The EMBO Journal 1985, 4: 1129-1135. PMID: 3891325, PMCID: PMC554314, DOI: 10.1002/j.1460-2075.1985.tb03750.x.Peer-Reviewed Original ResearchConceptsChimeric precursor proteinsMitochondrial importLeader peptideChimeric precursorsDihydrofolate reductaseMost mitochondrial proteinsPost-translational importMutant CHO cell linesCloned nucleotide sequencePrecursor proteinOrnithine transcarbamylaseCell-free systemCHO cell linesEnzyme dihydrofolate reductaseMitochondrial proteinsMitochondrial localizationRegulatory elementsLeader sequenceNucleotide sequenceStable transformantsAdditional proteinsSelectable markerChimeric proteinLarger precursorIntact cells
1983
Molecular cloning of the cDNA coding for rat ornithine transcarbamoylase.
Horwich A, Kraus J, Williams K, Kalousek F, Konigsberg W, Rosenberg L. Molecular cloning of the cDNA coding for rat ornithine transcarbamoylase. Proceedings Of The National Academy Of Sciences Of The United States Of America 1983, 80: 4258-4262. PMID: 6576335, PMCID: PMC384016, DOI: 10.1073/pnas.80.14.4258.Peer-Reviewed Original ResearchConceptsOrnithine transcarbamoylaseSequential Edman analysesCDNA probeMitochondrial matrix enzymeInsertion of cDNAAmino acid residuesConsecutive amino acid residuesCarboxyl-terminal portionCytoplasmic polysomesMolecular cloningCDNA clonesEdman analysisDifferential colony hybridizationTranslation assaysX chromosomeCDNA codingMatrix enzymeEnzyme subunitMessenger speciesAcid residuesSequence presentPolysome immunoadsorptionIdentical subunitsColony hybridizationEscherichia coliExpression and Stabilization of Microinjected Plasmids Containing the Herpes Simplex Virus Thymidine Kinase Gene and Polyoma Virus DNA in Mouse Cells
Yamaizumi M, Horwich A, Ruddle F. Expression and Stabilization of Microinjected Plasmids Containing the Herpes Simplex Virus Thymidine Kinase Gene and Polyoma Virus DNA in Mouse Cells. Molecular And Cellular Biology 1983, 3: 511-522. PMID: 6304496, PMCID: PMC368567, DOI: 10.1128/mcb.3.4.511.Peer-Reviewed Original Research