1998
[11] Construction of single-ring and two-ring hybrid versions of bacterial chaperonin GroEL
Horwich A, Burston S, Rye H, Weissman J, Fenton W. [11] Construction of single-ring and two-ring hybrid versions of bacterial chaperonin GroEL. Methods In Enzymology 1998, 290: 141-146. PMID: 9534157, DOI: 10.1016/s0076-6879(98)90013-1.Peer-Reviewed Original ResearchConceptsBacterial chaperonin GroELGreen fluorescent proteinChaperonin GroELDouble-ring assemblyAddition of GroESDouble-ring complexesSingle-ring versionUnliganded GroELBacterial chaperoninsGroEL ringNeighboring subunitProtein foldsGroELEquatorial domainNonnative formsFluorescent proteinGroESNative stateNative formCentral channelCritical signalingSubunitsSignalingForm contactsNormal ATP
1997
The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex
Xu Z, Horwich A, Sigler P. The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature 1997, 388: 741-750. PMID: 9285585, DOI: 10.1038/41944.Peer-Reviewed Original ResearchConceptsGroEL-GroESApical domainCis ringMulti-subunit protein assembliesCo-chaperonin GroESRings of subunitsPeptide-binding residuesChaperonin complexConsumption of ATPProtein foldingGroEL subunitProtein assembliesTrans ringAllosteric mechanismGroESEquatorial domainBloc movementDouble toroidSecond GroESEscherichia coliOutward tiltAsymmetric intermediatesCentral cavitySubunitsInward tilt
1995
Unliganded GroEL at 2.8 Å: structure and functional implications
Sigler P, Horwich A. Unliganded GroEL at 2.8 Å: structure and functional implications. Philosophical Transactions Of The Royal Society B Biological Sciences 1995, 348: 113-119. PMID: 7770481, DOI: 10.1098/rstb.1995.0052.Peer-Reviewed Original ResearchConceptsATP-binding pocketCentral channelUnfolded polypeptidesApical domainThree-dimensional structureExtensive mutagenesisMutational studiesDyad symmetryC-terminusDistinct domainsGroELATP analogBiochemical studiesStructural scaffoldFunctional implicationsHigh saltSubunitsDomainChaperoninGroESMutagenesisEntire lengthCrystal formsPolypeptideSymmetric ring
1992
TCP1 complex is a molecular chaperone in tubulin biogenesis
Yaffe M, Farr G, Miklos D, Horwich A, Sternlicht M, Sternlicht H. TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 1992, 358: 245-248. PMID: 1630491, DOI: 10.1038/358245a0.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsCycloheximideDNA-Binding ProteinsIntracellular Signaling Peptides and ProteinsKineticsMacromolecular SubstancesMicrotubule-Associated ProteinsMolecular WeightNuclear ProteinsProtein BiosynthesisProtein ConformationRabbitsReticulocytesRNA, MessengerT-Complex Genome RegionTubulinUbiquitin-Protein LigasesConceptsReticulocyte lysateTubulin subunitsCytosol of eukaryotesComplex polypeptide 1Protease-sensitive conformationRabbit reticulocyte lysateCytosolic chaperonesTubulin biogenesisMajor cytosolic proteinMolecular chaperonesTCP1 complexK proteinCytosolic proteinsΒ heterodimerBiogenesisPolypeptide 1Β-tubulinProteinSubunitsChaperonesMg-ATPK-complexesMolecular targetsNonhydrolysable analogueTubulin
1987
Import and processing of human ornithine transcarbamoylase precursor by mitochondria from Saccharomyces cerevisiae.
Cheng M, Pollock R, Hendrick J, Horwich A. Import and processing of human ornithine transcarbamoylase precursor by mitochondria from Saccharomyces cerevisiae. Proceedings Of The National Academy Of Sciences Of The United States Of America 1987, 84: 4063-4067. PMID: 3295876, PMCID: PMC305022, DOI: 10.1073/pnas.84.12.4063.Peer-Reviewed Original ResearchConceptsMitochondrial membraneEnzymatic activityNH2-terminal leader peptideMitochondrial matrix fractionWild-type precursorS. cerevisiae strainMitochondrial importMammalian mitochondriaMature subunitSubunit precursorOperon promoterS. cerevisiaeSelective growth conditionsLeader peptideYeast cellsArtificial mutationsOTCase activityMatrix fractionOrnithine transcarbamoylaseCerevisiae strainSaccharomycesGrowth conditionsMatrix compartmentMitochondriaSubunits
1985
Expression of amplified DNA sequences for ornithine transcarbamylase in HeLa cells: arginine residues may be required for mitochondrial import of enzyme precursor.
Horwich A, Fenton W, Firgaira F, Fox J, Kolansky D, Mellman I, Rosenberg L. Expression of amplified DNA sequences for ornithine transcarbamylase in HeLa cells: arginine residues may be required for mitochondrial import of enzyme precursor. Journal Of Cell Biology 1985, 100: 1515-1521. PMID: 3988798, PMCID: PMC2113848, DOI: 10.1083/jcb.100.5.1515.Peer-Reviewed Original ResearchConceptsMitochondrial importOTC precursorsHeLa cellsOrnithine transcarbamylaseArginine residuesMouse dihydrofolate reductaseNH2-terminal leader sequenceRate of importArginine analog canavanineViral regulatory elementsImmunoprecipitation of extractsMitochondrial localizationCDNA sequenceRegulatory elementsLeader sequenceDNA sequencesEnzyme precursorsMitochondrial enzymesCell extractsDihydrofolate reductaseEnzymatic activityBlot analysisNormal precursorsResiduesSubunits