2024
Characterization and implementation of the MarathonRT template-switching reaction to expand the capabilities of RNA-Seq
Guo L, Grinko A, Olson S, Leipold A, Graveley B, Saliba A, Pyle A. Characterization and implementation of the MarathonRT template-switching reaction to expand the capabilities of RNA-Seq. RNA 2024, 30: rna.080032.124. PMID: 39174298, PMCID: PMC11482623, DOI: 10.1261/rna.080032.124.Peer-Reviewed Original ResearchNontemplated additionRNA-seqRNA sequencingGroup II self-splicing intronsTemplate-switching oligonucleotidesLong-read sequencingRNA-seq technologySelf-splicing intronsTemplate-switching reactionsLong RNA transcriptsRNA sequencing methodsWell-characterized enzymesPoly(A)-enriched RNART enzymeRNA identityNucleotide specificityEnzymatic specificityRNA librariesRNA transcriptsLong RNAsHuman RNARNA moleculesRNA referenceAccurate sequencingBinding specificity
2022
The RIG-I receptor adopts two different conformations for distinguishing host from viral RNA ligands
Wang W, Pyle AM. The RIG-I receptor adopts two different conformations for distinguishing host from viral RNA ligands. Molecular Cell 2022, 82: 4131-4144.e6. PMID: 36272408, PMCID: PMC9707737, DOI: 10.1016/j.molcel.2022.09.029.Peer-Reviewed Original ResearchConceptsRNA moleculesRNA ligandsHigh-resolution cryo-EM structuresCryo-EM structureDouble-stranded RNARIG-I receptorInduction of autoimmunityViral RNA moleculesAutoinhibited conformationInnate immune receptorsHost RNARelated RNAProtein foldsMolecular basisUnique molecular featuresHigh-affinity conformationAntiviral sensingHost cellsRNA virusesRNA releaseImmune receptorsRNAViral RNAExquisite selectivityMolecular features
2020
Sequencing and Structure Probing of Long RNAs Using MarathonRT: A Next-Generation Reverse Transcriptase
Guo LT, Adams RL, Wan H, Huston NC, Potapova O, Olson S, Gallardo CM, Graveley BR, Torbett BE, Pyle AM. Sequencing and Structure Probing of Long RNAs Using MarathonRT: A Next-Generation Reverse Transcriptase. Journal Of Molecular Biology 2020, 432: 3338-3352. PMID: 32259542, PMCID: PMC7556701, DOI: 10.1016/j.jmb.2020.03.022.Peer-Reviewed Original ResearchConceptsLong RNA moleculesLong RNAsRNA moleculesRNA base modificationsGroup II intronsMutational profilingTranscriptome compositionRNA metabolismRNA researchBase modificationsPrimer extensionTool enzymeDiverse aspectsMixed populationEnzymeReverse transcriptionRNAStructural complexityReverse transcriptaseProfilingTranscriptase enzymeIntronsTranscription
2019
RIG-I Recognition of RNA Targets: The Influence of Terminal Base Pair Sequence and Overhangs on Affinity and Signaling
Ren X, Linehan MM, Iwasaki A, Pyle AM. RIG-I Recognition of RNA Targets: The Influence of Terminal Base Pair Sequence and Overhangs on Affinity and Signaling. Cell Reports 2019, 29: 3807-3815.e3. PMID: 31851914, DOI: 10.1016/j.celrep.2019.11.052.Peer-Reviewed Original ResearchConceptsRNA moleculesRIG-I activationBase pair sequenceHost RNA moleculesViral RNA moleculesRIG-I recognitionMolecular basisRNA variantsRNA targetsPair sequenceHuman cellsBase pairsImmune receptorsMechanisms of evasionTerminal base pairsLigand affinityWhole animalInterferon responseDeadly pathogenRNA therapeuticsMarburg virusCellsOverhangMoleculesSignaling
2003
RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space
Duarte CM, Wadley LM, Pyle AM. RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. Nucleic Acids Research 2003, 31: 4755-4761. PMID: 12907716, PMCID: PMC169959, DOI: 10.1093/nar/gkg682.Peer-Reviewed Original ResearchConceptsRNA structureRepertoire of RNANovel RNA structuresNew RNA structuresStructural genomicsRNA functionRNA conformational spaceRibosomal subunitRNA researchRNA moleculesRNA motifsRNA structure comparisonMotif searchTertiary structureConformational changesStructure comparisonNew motifMotifReduced representationConformational spaceMacromolecular structureFuture adaptationGenomicsMajor regionsSubunits
2000
[10] Using DNAzylnes to cut, process, and map RNA molecules for structural studies or modification
Pyle AM, Chu VT, Jankowsky E, Boudvillain M. [10] Using DNAzylnes to cut, process, and map RNA molecules for structural studies or modification. Methods In Enzymology 2000, 317: 140-146. PMID: 10829278, DOI: 10.1016/s0076-6879(00)17012-0.Peer-Reviewed Original ResearchConceptsStructural studiesTypes of DNAzymeTemplate-directed ligationDNAzyme reactionDNAzyme moleculesSimple DNA moleculesDNAzymeDivalent ionsAnalytical scaleMoleculesDNA moleculesAddition of Mg2Crystallographic applicationsRNA targetsRNA moleculesCatalytic coreIonsLong RNAsReactionModificationDifferent applicationsInexpensive wayRNA fragmentsMg2Incorporation