2024
Proteomic Profile of Circulating Extracellular Vesicles in the Brain after Δ9-Tetrahydrocannabinol Inhalation
Lallai V, Lam T, Garcia-Milian R, Chen Y, Fowler J, Manca L, Piomelli D, Williams K, Nairn A, Fowler C. Proteomic Profile of Circulating Extracellular Vesicles in the Brain after Δ9-Tetrahydrocannabinol Inhalation. Biomolecules 2024, 14: 1143. PMID: 39334909, PMCID: PMC11430348, DOI: 10.3390/biom14091143.Peer-Reviewed Original ResearchConceptsImmediate early gene c-fosChronic THC exposureEarly gene c-fosCannabinoid 1 receptorGene c-fosSex-specific mannerTHC exposurePsychoactive componentExtracellular vesiclesCentral signaling mechanismDrug effectsTHCChoroid plexus epithelial cellsFemale ratsC-fosPlexus epithelial cellsBrainCannabisRelease of EVsRegulate intercellular communicationCerebrospinal fluidEpithelial cellsIntercellular signaling mediatorsEV signalingIntercellular communication
2018
Striatal Signaling Regulated by the H3R Histamine Receptor in a Mouse Model of tic Pathophysiology
Rapanelli M, Frick L, Jindachomthong K, Xu J, Ohtsu H, Nairn A, Pittenger C. Striatal Signaling Regulated by the H3R Histamine Receptor in a Mouse Model of tic Pathophysiology. Neuroscience 2018, 392: 172-179. PMID: 30278251, PMCID: PMC6204318, DOI: 10.1016/j.neuroscience.2018.09.035.Peer-Reviewed Original ResearchConceptsHDC-KO miceMitogen-activated protein kinaseHistamine receptorsWT animalsDorsal striatumH3R activationTic-like movementsStriatonigral medium spiny neuronsAkt phosphorylationMedium spiny neuronsWild-type miceRare genetic causeHistamine dysregulationAgonist treatmentKO miceSpiny neuronsTic disordersTic pathophysiologyStriatal signalingMouse modelNeuropsychiatric diseasesKO modelRepetitive movementsStriatumMice
2017
ARPP-16 Is a Striatal-Enriched Inhibitor of Protein Phosphatase 2A Regulated by Microtubule-Associated Serine/Threonine Kinase 3 (Mast 3 Kinase)
Andrade EC, Musante V, Horiuchi A, Matsuzaki H, Brody AH, Wu T, Greengard P, Taylor JR, Nairn AC. ARPP-16 Is a Striatal-Enriched Inhibitor of Protein Phosphatase 2A Regulated by Microtubule-Associated Serine/Threonine Kinase 3 (Mast 3 Kinase). Journal Of Neuroscience 2017, 37: 2709-2722. PMID: 28167675, PMCID: PMC5354324, DOI: 10.1523/jneurosci.4559-15.2017.Peer-Reviewed Original ResearchConceptsSerine/threonine protein phosphataseSerine/threonine kinase 3Threonine protein phosphataseARPP-16Protein phosphataseKinase 3Protein phosphatase 2AProtein kinase A (PKA) signalingSmall acid-soluble proteinsKinase A SignalingAcid-soluble proteinsActivation of PKAPP2A substratesPhosphatase 2AARPP-16/19Heterotrimeric formMarked dephosphorylationSignal transductionSelective inhibitorPP2AA SignalingUnknown functionStriatal medium spiny neuronsMedium spiny neuronsSer46
2016
Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution
Nishi A, Matamales M, Musante V, Valjent E, Kuroiwa M, Kitahara Y, Rebholz H, Greengard P, Girault JA, Nairn AC. Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution. Journal Of Biological Chemistry 2016, 292: 1462-1476. PMID: 27998980, PMCID: PMC5270488, DOI: 10.1074/jbc.m116.752402.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1Ser-97PKA signalingDARPP-32Thr-34Activation of PP2A.Multiple cellular levelsProtein DARPP-32Phosphatase 1Heterotrimer complexPKA actionPhosphorylation stateNuclear localizationThr-75Phosphatase assaysDephosphorylationDARPP-32 phosphorylationCultured striatal neuronsSer-130Cellular levelSignalingPhosphorylationMajor siteStriatal neuronsGlutamate
2005
A molecular switch for translational control in taste memory consolidation
Belelovsky K, Elkobi A, Kaphzan H, Nairn A, Rosenblum K. A molecular switch for translational control in taste memory consolidation. European Journal Of Neuroscience 2005, 22: 2560-2568. PMID: 16307598, DOI: 10.1111/j.1460-9568.2005.04428.x.Peer-Reviewed Original ResearchConceptsEukaryotic elongation factor 2Protein synthesisEEF2 phosphorylationKinase 2 activationElongation factor 2Translational regulationTranslation initiationTranslational controlS6K1 phosphorylationMolecular switchSwitch-like effectNeuronal proteinsPhosphorylationElongation rateRate-limiting stepFactor 2Taste memory consolidationSynaptoneurosomal fractionsExpressionTemporal patternsInitiation rateProtein
2003
Adenylyl cyclase-dependent form of chemical long-term potentiation triggers translational regulation at the elongation step
Chotiner J, Khorasani H, Nairn A, O’Dell T, Watson J. Adenylyl cyclase-dependent form of chemical long-term potentiation triggers translational regulation at the elongation step. Neuroscience 2003, 116: 743-752. PMID: 12573716, DOI: 10.1016/s0306-4522(02)00797-2.Peer-Reviewed Original ResearchConceptsEukaryotic elongation factor 2Elongation factor 2Elongation stepProtein synthesisTotal protein synthesisChemical long-term potentiationMessenger RNALong-term potentiationN-methyl-D-aspartate (NMDA) receptor-dependent formInhibition of translationFactor 2Long-term potentiation inductionTranslational regulationProtein ArcAdenylyl cyclase signalingAdenylyl cyclase activationSynaptic activityCyclase signalingN-methyl-D-aspartate (NMDA) receptor activationPersistent maintenanceReceptor-dependent formHippocampal long-term potentiationPhosphorylationRegulationRNA
2001
Opposing Changes in Phosphorylation of Specific Sites in Synapsin I During Ca2+-Dependent Glutamate Release in Isolated Nerve Terminals
Jovanovic J, Sihra T, Nairn A, Hemmings H, Greengard P, Czernik A. Opposing Changes in Phosphorylation of Specific Sites in Synapsin I During Ca2+-Dependent Glutamate Release in Isolated Nerve Terminals. Journal Of Neuroscience 2001, 21: 7944-7953. PMID: 11588168, PMCID: PMC6763853, DOI: 10.1523/jneurosci.21-20-07944.2001.Peer-Reviewed Original ResearchConceptsDependent dephosphorylationProtein phosphatase 2AMultiple protein kinasesPhosphorylation site 1Protein phosphatase 2BSynapsin IPhosphatase 2APhosphorylation sitesPhosphatase 2BSynapsin functionProtein kinaseDependent phosphorylationSynapsin I phosphorylationDephosphorylation processNeuronal phosphoproteinSynapsin I.Synaptic vesiclesCalcineurin activityPhosphorylationI phosphorylationDephosphorylationNeurotransmitter releaseSpecific sitesExcellent substrateSite 1Regulation of cyclin-dependent kinase 5 and casein kinase 1 by metabotropic glutamate receptors
Liu F, Ma X, Ule J, Bibb J, Nishi A, DeMaggio A, Yan Z, Nairn A, Greengard P. Regulation of cyclin-dependent kinase 5 and casein kinase 1 by metabotropic glutamate receptors. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 11062-11068. PMID: 11572969, PMCID: PMC58683, DOI: 10.1073/pnas.191353898.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalcium ChannelsCasein KinasesCyclin-Dependent Kinase 5Cyclin-Dependent KinasesDopamine and cAMP-Regulated Phosphoprotein 32Enzyme InhibitorsIn Vitro TechniquesKineticsMaleMembrane PotentialsMethoxyhydroxyphenylglycolMiceMice, Inbred C57BLNeostriatumNerve Tissue ProteinsNeuronsPatch-Clamp TechniquesPhosphoproteinsPhosphorylationPhosphoserinePhosphothreonineProtein KinasesReceptors, Metabotropic GlutamateConceptsCasein kinase 1Cyclin-dependent kinase 5Ser-137Thr-75CK1 activityKinase 1Kinase 5DARPP-32Regulation of Cdk5Neuronal protein kinaseActivation of Cdk5Cellular functionsProtein kinaseDNA repairEnhanced phosphorylationFirst messengersCdk5 activitySpecific inhibitorCdk5Effects of DHPGMetabotropic glutamate receptorsNeurite outgrowthIC261Glutamate receptorsDHPG-induced increaseARPP‐16/ARPP‐19: a highly conserved family of cAMP‐regulated phosphoproteins
Dulubova I, Horiuchi A, Snyder G, Girault J, Czernik A, Shao L, Ramabhadran R, Greengard P, Nairn A. ARPP‐16/ARPP‐19: a highly conserved family of cAMP‐regulated phosphoproteins. Journal Of Neurochemistry 2001, 77: 229-238. DOI: 10.1046/j.1471-4159.2001.00191.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCHO CellsConserved SequenceCorpus StriatumCricetinaeCyclic AMPCyclic AMP-Dependent Protein KinasesHumansIn Vitro TechniquesMaleMiceMultigene FamilyOrgan SpecificityPhosphoproteinsPhosphorylationProtein IsoformsRatsRats, Sprague-DawleyReceptors, Dopamine D1Receptors, Dopamine D2Sequence Homology, Amino AcidConceptsProtein kinase AARPP-19ARPP-16Family of cAMPImportant cellular functionsActivation of PKAIsoform-specific antibodiesYeast genomeD. melanogasterC. elegansProtein familyCellular functionsNon-neuronal cellsSignal transductionConsensus sitesKinase ARelated proteinsΑ-endosulfinePhosphorylated formIntact cellsIntracellular messengerBi-directional regulationDopamine receptorsFamily membersPhosphorylationARPP-16/ARPP-19: a highly conserved family of cAMP-regulated phosphoproteins.
Dulubova I, Horiuchi A, Snyder G, Girault J, Czernik A, Shao L, Ramabhadran R, Greengard P, Nairn A. ARPP-16/ARPP-19: a highly conserved family of cAMP-regulated phosphoproteins. Journal Of Neurochemistry 2001, 77: 229-38. PMID: 11279279, DOI: 10.1046/j.1471-4159.2001.t01-1-00191.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCHO CellsConserved SequenceCorpus StriatumCricetinaeCyclic AMPCyclic AMP-Dependent Protein KinasesHumansIn Vitro TechniquesMaleMiceMultigene FamilyOrgan SpecificityPhosphoproteinsPhosphorylationProtein IsoformsRatsRats, Sprague-DawleyReceptors, Dopamine D1Receptors, Dopamine D2Sequence Homology, Amino AcidConceptsProtein kinase AARPP-19ARPP-16Family of cAMPImportant cellular functionsActivation of PKAIsoform-specific antibodiesYeast genomeD. melanogasterC. elegansProtein familyCellular functionsNon-neuronal cellsSignal transductionConsensus sitesType dopamine receptorsKinase ARelated proteinsPhosphorylated formIntact cellsDopamine receptorsIntracellular messengerBi-directional regulationFamily membersPhosphorylationEffects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5
Bibb J, Chen J, Taylor J, Svenningsson P, Nishi A, Snyder G, Yan Z, Sagawa Z, Ouimet C, Nairn A, Nestler E, Greengard P. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 2001, 410: 376-380. PMID: 11268215, DOI: 10.1038/35066591.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainCocaineCocaine-Related DisordersCorpus StriatumCyclin-Dependent Kinase 5Cyclin-Dependent KinasesDopamineDopamine and cAMP-Regulated Phosphoprotein 32Enzyme InhibitorsGene Expression Regulation, EnzymologicKinetinMaleMiceMice, TransgenicNerve Tissue ProteinsNeuronsOligonucleotide Array Sequence AnalysisPhosphoproteinsPhosphorylationProto-Oncogene Proteins c-fosPsychomotor PerformancePurinesRatsRats, Sprague-DawleyReceptors, Dopamine D1RoscovitineSignal TransductionConceptsTranscription factorsSuch transcription factorsDownstream target genesCyclin-dependent kinase 5DNA array analysisTarget genesGene expressionCocaine administrationKinase 5Inducible transgenic miceChronic exposureCdk5 inhibitorMessenger RNACocaine addictionArray analysisDopamine-mediated neurotransmissionDopamine-containing nerve terminalsMedium spiny neuronsD1 dopamine receptorsChronic cocaine administrationOverexpression of ΔFosBProteinTransgenic miceAdaptive changesSpiny neurons
2000
The Dopamine/D1 Receptor Mediates the Phosphorylation and Inactivation of the Protein Tyrosine Phosphatase STEP via a PKA-Dependent Pathway
Paul S, Snyder G, Yokakura H, Picciotto M, Nairn A, Lombroso P. The Dopamine/D1 Receptor Mediates the Phosphorylation and Inactivation of the Protein Tyrosine Phosphatase STEP via a PKA-Dependent Pathway. Journal Of Neuroscience 2000, 20: 5630-5638. PMID: 10908600, PMCID: PMC6772528, DOI: 10.1523/jneurosci.20-15-05630.2000.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsCatalytic DomainCorpus StriatumCyclic AMP-Dependent Protein KinasesEnzyme ActivationIn Vitro TechniquesMaleMolecular Sequence DataNeuronsPhosphoproteinsPhosphorus RadioisotopesPhosphorylationProtein Tyrosine PhosphatasesProtein Tyrosine Phosphatases, Non-ReceptorRatsRats, Sprague-DawleyReceptors, Dopamine D1Signal TransductionConceptsProtein tyrosine phosphatase familyCAMP-dependent protein kinaseTryptic phosphopeptide mappingPotential phosphorylation sitesUnique N-terminalProtein-protein interactionsMembrane-associated proteinsRole of phosphorylationTyrosine phosphatase familyAmino acid sequenceSite-directed mutagenesisAmino acid sequencingPKA-dependent pathwayTyrosine phosphatase STEPPhosphatase familyPhosphopeptide mappingPhosphorylation sitesAlternative splicingSubcellular compartmentsProtein kinaseTerminal domainEquivalent residuesCytosolic proteinsSpecific residuesAcid sequenceRegulation of Phosphorylation of the GluR1 AMPA Receptor in the Neostriatum by Dopamine and Psychostimulants In Vivo
Snyder G, Allen P, Fienberg A, Valle C, Huganir R, Nairn A, Greengard P. Regulation of Phosphorylation of the GluR1 AMPA Receptor in the Neostriatum by Dopamine and Psychostimulants In Vivo. Journal Of Neuroscience 2000, 20: 4480-4488. PMID: 10844017, PMCID: PMC6772453, DOI: 10.1523/jneurosci.20-12-04480.2000.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBenzazepinesCentral Nervous System StimulantsDopamineDopamine and cAMP-Regulated Phosphoprotein 32In Vitro TechniquesMaleMethamphetamineMiceMice, Inbred C57BLMice, KnockoutMicrowavesNeostriatumNerve Tissue ProteinsOkadaic AcidPhosphoprotein PhosphatasesPhosphoproteinsPhosphorylationProtein Phosphatase 1Protein Phosphatase 2Receptors, AMPAReceptors, Dopamine D1Receptors, Dopamine D2Recombinant Fusion ProteinsSerineConceptsCAMP-dependent protein kinaseProtein phosphatase 2A.AMPA-type glutamate receptorsCalmodulin-dependent kinase IICalcium/calmodulin-dependent kinase IIRegulation of phosphorylationProtein kinase CPhosphatase 2A.Protein kinaseKinase IIPhosphorylation of GluR1Kinase CGluR1 AMPA receptorsPhosphorylationCellular effectorsGlutamate receptorsDARPP-32Physiological activityAMPA receptorsPsychostimulant cocaineChannel conductanceReceptorsD1-type dopamine receptorsActivationVivoProstaglandin E2 interaction with AVP: effects on AQP2 phosphorylation and distribution
Zelenina M, Christensen B, Palmér J, Nairn A, Nielsen S, Aperia A. Prostaglandin E2 interaction with AVP: effects on AQP2 phosphorylation and distribution. American Journal Of Physiology. Renal Physiology 2000, 278: f388-f394. PMID: 10710543, DOI: 10.1152/ajprenal.2000.278.3.f388.Peer-Reviewed Original ResearchConceptsTranslocation of AQP2AQP2 phosphorylationPlasma membraneAquaporin-2Subcellular distributionPlasma membrane-enriched fractionVesicle-enriched fractionsMembrane-enriched fractionDuct water permeabilityConsensus sitesIntracellular vesiclesPhosphorylationDifferential centrifugation techniqueAction of arginineRenal inner medullaE2 interactionRat renal inner medullaTranslocationInner medullaDose-dependent mannerWater channelsMembraneDephosphorylationTraffickingProtein
1999
The expression of Ca2+/calmodulin-dependent protein kinase I in rat retina is regulated by light stimulation
Tsumura T, Murata A, Yamaguchi F, Sugimoto K, Hasegawa E, Hatase O, Nairn A, Tokuda M. The expression of Ca2+/calmodulin-dependent protein kinase I in rat retina is regulated by light stimulation. Vision Research 1999, 39: 3165-3173. PMID: 10615488, DOI: 10.1016/s0042-6989(99)00063-2.Peer-Reviewed Original ResearchRegulation of Neurabin I Interaction with Protein Phosphatase 1 by Phosphorylation †
McAvoy T, Allen P, Obaishi H, Nakanishi H, Takai Y, Greengard P, Nairn A, Hemmings H. Regulation of Neurabin I Interaction with Protein Phosphatase 1 by Phosphorylation †. Biochemistry 1999, 38: 12943-12949. PMID: 10504266, DOI: 10.1021/bi991227d.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1Neurabin IPP1 activityPhosphatase 1Two-hybrid interaction analysisActin-binding proteinsCo-immunoprecipitation experimentsMimic phosphorylationSerine 461Phosphorylated residuesGlutathione S-transferaseOverlay assaysFusion proteinSignaling mechanismGamma isoformsCAMP pathwayPhosphorylationS-transferaseProteinTryptic digestPKARegulationHPLC-MS analysisInteraction analysisS461Requirement for DARPP‐32 in mediating effect of dopamine D2 receptor activation
Nishi A, Snyder G, Fienberg A, Fisone G, Aperia A, Nairn A, Greengard P. Requirement for DARPP‐32 in mediating effect of dopamine D2 receptor activation. European Journal Of Neuroscience 1999, 11: 2589-2592. PMID: 10383649, DOI: 10.1046/j.1460-9568.1999.00724.x.Peer-Reviewed Original ResearchConceptsDopamine D2 agonistD1 agonistDopamine D1 agonistDARPP-32D2 agonistDopamine D2 receptor activationDopamine D2 receptor agonistD2 receptor activationD2 receptor agonistBiological effectsReceptor agonistD1 receptorsD2 receptorsMouse neostriatumProtein phosphatase-1 inhibitorReceptor activationAgonistsPhosphatase-1 inhibitorDopamine signalingObligatory roleRole of Calcineurin and Protein Phosphatase‐2A in the Regulation of DARPP‐32 Dephosphorylation in Neostriatal Neurons
Nishi A, Snyder G, Nairn A, Greengard P. Role of Calcineurin and Protein Phosphatase‐2A in the Regulation of DARPP‐32 Dephosphorylation in Neostriatal Neurons. Journal Of Neurochemistry 1999, 72: 2015-2021. PMID: 10217279, DOI: 10.1046/j.1471-4159.1999.0722015.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalcineurinCalcineurin InhibitorsCyclosporineDopamine and cAMP-Regulated Phosphoprotein 32Drug CombinationsDrug SynergismEnzyme InhibitorsIn Vitro TechniquesMaleMarine ToxinsMiceMice, Inbred C57BLNeostriatumNerve Tissue ProteinsNeuronsOkadaic AcidOxazolesPhosphoprotein PhosphatasesPhosphoproteinsPhosphorylationProtein Phosphatase 1Protein Phosphatase 2ConceptsProtein phosphatase 1Protein phosphatase 2AOkadaic acidPhosphorylated DARPP-32DARPP-32 phosphorylationPhosphatase 2APP-2ADARPP-32Cyclic AMP-dependent protein kinaseAMP-dependent protein kinasePP-2A activityRole of calcineurinPhosphatase 1Calyculin AMouse neostriatal slicesProtein kinaseAction of cyclosporinDependent activationCalcineurinPresence of cyclosporinPhosphorylationDephosphorylationSynergistic increaseThr34Potent inhibitorArginine vasopressin stimulates phosphorylation of aquaporin-2 in rat renal tissue
Nishimoto G, Zelenina M, Li D, Yasui M, Aperia A, Nielsen S, Nairn A. Arginine vasopressin stimulates phosphorylation of aquaporin-2 in rat renal tissue. American Journal Of Physiology 1999, 276: f254-f259. PMID: 9950956, DOI: 10.1152/ajprenal.1999.276.2.f254.Peer-Reviewed Original ResearchConceptsPhosphorylation of AQP2Protein kinase AAquaporin-2Two-dimensional phosphopeptide mappingCAMP-dependent protein kinase AConsensus phosphorylation sitesActivation of PKAPhosphopeptide mappingPhosphorylation sitesMaximal phosphorylationAQP2 phosphorylationKinase APhosphorylationSer256Immunoblot analysis
1997
Widespread Neuronal Ectopia Associated with Secondary Defects in Cerebrocortical Chondroitin Sulfate Proteoglycans and Basal Lamina in MARCKS-Deficient Mice
Blackshear P, Silver J, Nairn A, Sulik K, Squier M, Stumpo D, Tuttle J. Widespread Neuronal Ectopia Associated with Secondary Defects in Cerebrocortical Chondroitin Sulfate Proteoglycans and Basal Lamina in MARCKS-Deficient Mice. Experimental Neurology 1997, 145: 46-61. PMID: 9184108, DOI: 10.1006/exnr.1997.6475.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, MonoclonalBasement MembraneCerebral CortexChondroitin SulfatesFemaleGene Expression Regulation, DevelopmentalIntracellular Signaling Peptides and ProteinsLamininMaleMembrane ProteinsMiceMice, Mutant StrainsMicroscopy, Electron, ScanningMutationMyristoylated Alanine-Rich C Kinase SubstrateNeurogliaNeuronsPia MaterPregnancyProteinsProteoglycansReticulinSynaptophysinConceptsChondroitin sulfate proteoglycanNeuronal ectopiaBasal laminaSulfate proteoglycanProtein kinase CEmbryonic day 13Basal lamina proteinsReticulin stainingSubarachnoid spaceForebrain commissuresPial membraneDay 13EctopiaGross abnormalitiesRetinal laminationMiceMARCKS deficiencyAbnormalitiesPotential mechanismsNeural substratesMarginal zoneProteolytic destructionKinase CProteoglycansLamina