2016
Switching on mTORC1 induces neurogenesis but not proliferation in neural stem cells of young mice
Mahoney C, Feliciano DM, Bordey A, Hartman NW. Switching on mTORC1 induces neurogenesis but not proliferation in neural stem cells of young mice. Neuroscience Letters 2016, 614: 112-118. PMID: 26812181, DOI: 10.1016/j.neulet.2015.12.042.Peer-Reviewed Original ResearchConceptsNeural stem cellsSubventricular zoneNeonatal subventricular zoneWeek old miceTuberous sclerosis complexStem cellsNewborn neuroblastsYoung miceOld miceProgressive lossYoung adultsRapamycin complex 1Mechanistic targetRecent evidenceProliferative cellsMiceHyperactive mTORC1Terminal differentiationCellsMTORC1 activationProliferationActivationMTORC1NeurogenesisHyperactivity
2013
mTORC1 Targets the Translational Repressor 4E-BP2, but Not S6 Kinase 1/2, to Regulate Neural Stem Cell Self-Renewal In Vivo
Hartman NW, Lin TV, Zhang L, Paquelet GE, Feliciano DM, Bordey A. mTORC1 Targets the Translational Repressor 4E-BP2, but Not S6 Kinase 1/2, to Regulate Neural Stem Cell Self-Renewal In Vivo. Cell Reports 2013, 5: 433-444. PMID: 24139800, DOI: 10.1016/j.celrep.2013.09.017.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCarrier ProteinsCell Cycle ProteinsCell DifferentiationCells, CulturedEukaryotic Initiation FactorsMechanistic Target of Rapamycin Complex 1MiceMonomeric GTP-Binding ProteinsMultiprotein ComplexesNeural Stem CellsNeuropeptidesPhosphoproteinsPhosphorylationRas Homolog Enriched in Brain ProteinRibosomal Protein S6 Kinases, 90-kDaRNA InterferenceRNA, Small InterferingSirolimusTOR Serine-Threonine KinasesConceptsCap-dependent translationNeural stem cellsNSC differentiationStem Cell Self-RenewalTranslational repressor 4E-BP1P70 S6 kinase 1Neural Stem Cell Self-RenewalCell Self-RenewalRapamycin complex 1Neonatal neural stem cellsS6 kinase 1Downstream regulatory mechanismsLineage expansionSelf-RenewalRegulatory mechanismsKinase 1Kinase 1/2Constitutive activationMammalian targetCell growthStem cellsBrain sizeDifferentiationKnockdownNeuron productionRheb Activation in Subventricular Zone Progenitors Leads to Heterotopia, Ectopic Neuronal Differentiation, and Rapamycin-Sensitive Olfactory Micronodules and Dendrite Hypertrophy of Newborn Neurons
Lafourcade CA, Lin TV, Feliciano DM, Zhang L, Hsieh LS, Bordey A. Rheb Activation in Subventricular Zone Progenitors Leads to Heterotopia, Ectopic Neuronal Differentiation, and Rapamycin-Sensitive Olfactory Micronodules and Dendrite Hypertrophy of Newborn Neurons. Journal Of Neuroscience 2013, 33: 2419-2431. PMID: 23392671, PMCID: PMC3711634, DOI: 10.1523/jneurosci.1840-12.2013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornCell DifferentiationCell EnlargementCell Line, TumorCell MovementCerebral VentriclesDendritesElectroporationFemaleHypertrophyMaleMiceMonomeric GTP-Binding ProteinsNeural Stem CellsNeurogenesisNeuronsNeuropeptidesOlfactory BulbRas Homolog Enriched in Brain ProteinSirolimusStem CellsTOR Serine-Threonine KinasesConceptsNeural progenitor cellsWild-type miceOlfactory bulbMTOR activitySynaptic inputsEctopic neuronal differentiationSubventricular zone neural progenitor cellsActive ras homologNeuronal differentiationGABAergic synaptic inputsTsc1 mutant miceSubventricular zone progenitorsDendritic complexityNewborn neuronsTuberous sclerosisOlig2 cellsHyperactive mTORHeterozygote miceCircuit formationAction potentialsNeuronal morphologyNewborn cellsMutant miceEctopic cellsMammalian target
2012
Newborn cortical neurons: only for neonates?
Feliciano DM, Bordey A. Newborn cortical neurons: only for neonates? Trends In Neurosciences 2012, 36: 51-61. PMID: 23062965, PMCID: PMC3534801, DOI: 10.1016/j.tins.2012.09.004.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAdult Stem CellsAnimalsAnimals, NewbornCell DifferentiationCerebral CortexHumansInfant, NewbornNeural Stem CellsNeurogenesisNKCC1 Knockdown Decreases Neuron Production through GABAA-Regulated Neural Progenitor Proliferation and Delays Dendrite Development
Young SZ, Taylor MM, Wu S, Ikeda-Matsuo Y, Kubera C, Bordey A. NKCC1 Knockdown Decreases Neuron Production through GABAA-Regulated Neural Progenitor Proliferation and Delays Dendrite Development. Journal Of Neuroscience 2012, 32: 13630-13638. PMID: 23015452, PMCID: PMC3478384, DOI: 10.1523/jneurosci.2864-12.2012.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnalysis of VarianceAnimalsAnimals, NewbornCalciumCell CountCell DifferentiationCell ProliferationCells, CulturedCerebral VentriclesDendritesEgtazic AcidElectroporationFemaleGABA ModulatorsGABA-A Receptor AgonistsGreen Fluorescent ProteinsIn Vitro TechniquesKi-67 AntigenLuminescent ProteinsMaleMiceMuscimolNeural Stem CellsNeuronsOlfactory BulbPatch-Clamp TechniquesPentobarbitalReceptors, GABA-ARNA, Small InterferingSodium-Potassium-Chloride SymportersSolute Carrier Family 12, Member 2SOXB1 Transcription FactorsTransfectionConceptsNPC proliferationDecreased neuronal densityTotal dendritic lengthNeonatal subventricular zoneNeural stem cell proliferationNeural progenitor cell developmentNeural progenitor proliferationShort hairpin RNADendritic complexityDendritic lengthNeuronal densityNewborn neuronsDendritic arborizationNeuron densityDendritic developmentSubventricular zoneNeuron productionCalcium responseSynaptic integrationNKCC1 knockdownPentobarbital effectsAllosteric agonistDendritic treeProgenitor cell developmentCotransporter NKCC1
2010
MicroRNA miR‐137 Regulates Neuronal Maturation by Targeting Ubiquitin Ligase Mind Bomb‐1
Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M, Teng Z, Luo Y, Peng J, Bordey A, Jin P, Zhao X. MicroRNA miR‐137 Regulates Neuronal Maturation by Targeting Ubiquitin Ligase Mind Bomb‐1. Stem Cells 2010, 28: 1060-1070. PMID: 20506192, PMCID: PMC3140955, DOI: 10.1002/stem.431.Peer-Reviewed Original ResearchConceptsNeuronal maturationMiR-137Dendritic morphogenesisSpine developmentNovel miRNA-mediated mechanismCultured primary neuronsMiR-137 overexpressionConserved target sitesMiR-137 targetsBrain-enriched microRNAYoung neuronsMicroRNA miR-137Phenotypic maturationPrimary neuronsAxonal growthMiRNA-mediated mechanismMIB1Mind bomb-1NeuronsMessenger RNAMaturationOpposite effectOverexpressionMicroRNAsNeurodevelopmentNMDA Receptors Activated by Subventricular Zone Astrocytic Glutamate Are Critical for Neuroblast Survival Prior to Entering a Synaptic Network
Platel JC, Dave KA, Gordon V, Lacar B, Rubio ME, Bordey A. NMDA Receptors Activated by Subventricular Zone Astrocytic Glutamate Are Critical for Neuroblast Survival Prior to Entering a Synaptic Network. Neuron 2010, 65: 859-872. PMID: 20346761, PMCID: PMC2861893, DOI: 10.1016/j.neuron.2010.03.009.Peer-Reviewed Original ResearchConceptsAdult-born neuronsNMDA receptorsNMDAR activitySynaptic networksNeuroblast survivalGlutamate release machineryAstrocyte-like cellsLoss of neuroblastsNeonatal electroporationSpecialized astrocytesAstrocytic glutamateOlfactory bulbVesicular releaseRelease machineryReceptorsNeuroblastsNeuronsIntercellular mechanismsSurvivalGlutamateNeuroblast apoptosisAstrocytesNeurogenesisNeurotransmittersSVZ
2008
Control of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain
Platel J, Dave KA, Bordey A. Control of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain. The Journal Of Physiology 2008, 586: 3739-3743. PMID: 18467361, PMCID: PMC2538924, DOI: 10.1113/jphysiol.2008.155325.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsNeuroblast productionGlutamate receptorsStem cellsSteady-state levelsAdult-born neuronsNovel epigenetic controlNeural stem cellsImmature neuronsAdult neurogenesisNeurotransmitter GABAOlfactory bulbPostnatal forebrainNeuron productionNew steady-state levelStem cell proliferationHigh-affinity uptake systemCalcium elevationNeurotransmitter releaseEpigenetic controlExtracellular concentrationGlutamate signalsGABANegative feedback controlNeuroblast numbersIntercellular signalingTonic activation of GLUK5 kainate receptors decreases neuroblast migration in whole‐mounts of the subventricular zone
Platel J, Heintz T, Young S, Gordon V, Bordey A. Tonic activation of GLUK5 kainate receptors decreases neuroblast migration in whole‐mounts of the subventricular zone. The Journal Of Physiology 2008, 586: 3783-3793. PMID: 18565997, PMCID: PMC2538932, DOI: 10.1113/jphysiol.2008.155879.Peer-Reviewed Original ResearchConceptsKainate receptorsSVZ neuroblastsLateral ventricleSubventricular zoneNeuroblast migrationAcute slicesMetabotropic glutamate receptor subtype 5AMPA/kainate receptorsMGluR5 antagonist MPEPPermeable kainate receptorsReceptor antagonist bicucullineActivation of mGluR5Postnatal day 20Postnatal subventricular zoneDCX promoterAntagonist MPEPWhole-mount preparationsAntagonist bicucullineMGluR5 activationCell aspiratesReceptor antagonistMouse slicesTonic activationSubtype 5Immunopositive cells
2006
Enigmatic GABAergic networks in adult neurogenic zones
Bordey A. Enigmatic GABAergic networks in adult neurogenic zones. Brain Research Reviews 2006, 53: 124-134. PMID: 16949673, DOI: 10.1016/j.brainresrev.2006.07.004.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAnimalsBrainCell DifferentiationGamma-Aminobutyric AcidHumansNerve NetNeuronal PlasticityNeuronsParacrine CommunicationSignal TransductionStem CellsConceptsAdult neurogenic zonesNeurogenic zonesGABAergic networksGABAergic signalingAdult neurogenic regionsGABA actionSubventricular zoneNeuronal activityNeurogenic regionsReceptor activationImmature cellsProgenitor cellsUnique cellular propertiesNetwork activitySignalingCellsCellular propertiesReviewGFAP‐expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes
Liu X, Bolteus AJ, Balkin DM, Henschel O, Bordey A. GFAP‐expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia 2006, 54: 394-410. PMID: 16886203, DOI: 10.1002/glia.20392.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid Transport System X-AGAnimalsAnimals, NewbornAstrocytesBiomarkersCell DifferentiationCell ShapeConnexinsEpendymaGlial Fibrillary Acidic ProteinGlutamic AcidGreen Fluorescent ProteinsMembrane PotentialsMiceMice, TransgenicOrgan Culture TechniquesPatch-Clamp TechniquesPhenotypePotassiumPotassium ChannelsRecombinant Fusion ProteinsStem CellsTelencephalonConceptsGlial fibrillary acidic proteinPostnatal subventricular zoneSubventricular zoneGFAP-expressing cellsRadial gliaAstroglial marker glial fibrillary acidic proteinGlial propertiesEpendymal cellsGlutamate transportersGLT-1 glutamate transporterMarker glial fibrillary acidic proteinAMPA-type glutamate receptorsFunctional glutamate transportersFibrillary acidic proteinHuman glial fibrillary acidic proteinAdult subventricular zoneConnexin 43 expressionGap junction couplingNeural stem cellsMicroM Ba2Acute slicesAstrocytic functionsGlutamate receptorsGlial phenotypeClamp recordingsAdult Neurogenesis: Basic Concepts of Signaling
Bordey A. Adult Neurogenesis: Basic Concepts of Signaling. Cell Cycle 2006, 5: 722-728. PMID: 16582623, DOI: 10.4161/cc.5.7.2614.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAgingCell CommunicationCell DifferentiationHumansModels, NeurologicalNeuronsSignal TransductionStem CellsConceptsAdult neurogenesisMotor memory formationBrain injuryPersistent neurogenesisNeurogenic environmentAdult brainNeurogenic regionsNeuroglial networksNeurogenesisEmbryonic neurogenesisIntegrative propertiesMemory formationExtracellular matrix moleculesCell communicationBrainRecent findingsCellsExamples of cellsMatrix moleculesInjury
1998
Electrophysiological Properties of Human Astrocytic Tumor Cells In Situ: Enigma of Spiking Glial Cells
Bordey A, Sontheimer H. Electrophysiological Properties of Human Astrocytic Tumor Cells In Situ: Enigma of Spiking Glial Cells. Journal Of Neurophysiology 1998, 79: 2782-2793. PMID: 9582244, DOI: 10.1152/jn.1998.79.5.2782.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAstrocytesAstrocytomaBrain NeoplasmsCarcinomaCell DifferentiationChildChoroid Plexus NeoplasmsDelayed Rectifier Potassium ChannelsHumansIon TransportNeoplasm ProteinsNeoplastic Stem CellsNerve Tissue ProteinsPatch-Clamp TechniquesPotassiumPotassium Channel BlockersPotassium ChannelsPotassium Channels, Inwardly RectifyingPotassium Channels, Voltage-GatedSodium Channel BlockersSodium ChannelsSpinal CordTetraethylammoniumTetrodotoxinConceptsAstrocytoma cellsTumor cellsGlial cellsWhole-cell patch-clamp recordingsCell patch-clamp recordingsAction potential-like responsesOlder pediatric patientsSpinal cord astrocytesHuman astrocytic tumor cellsSensitive sodium currentsGroup of tumorsLow-grade astrocytomasPatch-clamp recordingsOutward potassium currentGlial tumor cellsAstrocytic tumor cellsGeneration of spikesHigh input resistancePeritumoral astrocytesPediatric patientsMicroM Ba2Pilocytic astrocytomaPotassium currentAstrocytesElectrophysiological properties