2016
Switching on mTORC1 induces neurogenesis but not proliferation in neural stem cells of young mice
Mahoney C, Feliciano DM, Bordey A, Hartman NW. Switching on mTORC1 induces neurogenesis but not proliferation in neural stem cells of young mice. Neuroscience Letters 2016, 614: 112-118. PMID: 26812181, DOI: 10.1016/j.neulet.2015.12.042.Peer-Reviewed Original ResearchConceptsNeural stem cellsSubventricular zoneNeonatal subventricular zoneWeek old miceTuberous sclerosis complexStem cellsNewborn neuroblastsYoung miceOld miceProgressive lossYoung adultsRapamycin complex 1Mechanistic targetRecent evidenceProliferative cellsMiceHyperactive mTORC1Terminal differentiationCellsMTORC1 activationProliferationActivationMTORC1NeurogenesisHyperactivity
2015
The multifaceted subventricular zone astrocyte: From a metabolic and pro-neurogenic role to acting as a neural stem cell
Platel JC, Bordey A. The multifaceted subventricular zone astrocyte: From a metabolic and pro-neurogenic role to acting as a neural stem cell. Neuroscience 2015, 323: 20-28. PMID: 26546469, PMCID: PMC4821790, DOI: 10.1016/j.neuroscience.2015.10.053.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsVentricular-subventricular zoneNeural progenitor cellsPro-neurogenic roleHippocampal dentate gyrusNeural stem cellsSubgranular zoneNewborn neuronsNeurogenic propertiesDentate gyrusNew neuronsLateral ventricleAdult brainMature astrocytesTranscription factor expressionNeurogenic fateNeurophysiological characteristicsFactor expressionAstrocytesBlood vesselsProgenitor cellsMetabolic couplingSurvival cuesNeuronsStem cellsCellsNoncanonical Sites of Adult Neurogenesis in the Mammalian Brain
Feliciano DM, Bordey A, Bonfanti L. Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain. Cold Spring Harbor Perspectives In Biology 2015, 7: a018846. PMID: 26384869, PMCID: PMC4588058, DOI: 10.1101/cshperspect.a018846.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2014
Embryonic Cerebrospinal Fluid Nanovesicles Carry Evolutionarily Conserved Molecules and Promote Neural Stem Cell Amplification
Feliciano DM, Zhang S, Nasrallah CM, Lisgo SN, Bordey A. Embryonic Cerebrospinal Fluid Nanovesicles Carry Evolutionarily Conserved Molecules and Promote Neural Stem Cell Amplification. PLOS ONE 2014, 9: e88810. PMID: 24533152, PMCID: PMC3923048, DOI: 10.1371/journal.pone.0088810.Peer-Reviewed Original ResearchConceptsNeural stem cellsRapamycin complex 1 (mTORC1) pathwayIntracellular pathwaysStem cell amplificationInsulin-like growth factorCoordinated regulationGenetic programMicroRNA componentsExosome NanovesiclesEmbryonic CSFCell amplificationStem cellsENSCsPathwayCoordinated transferGrowth factorHuman embryosBrain developmentNanovesiclesMixed cultureAmplificationMoleculesEmbryosProteinExosomes
2013
mTORC1 Targets the Translational Repressor 4E-BP2, but Not S6 Kinase 1/2, to Regulate Neural Stem Cell Self-Renewal In Vivo
Hartman NW, Lin TV, Zhang L, Paquelet GE, Feliciano DM, Bordey A. mTORC1 Targets the Translational Repressor 4E-BP2, but Not S6 Kinase 1/2, to Regulate Neural Stem Cell Self-Renewal In Vivo. Cell Reports 2013, 5: 433-444. PMID: 24139800, DOI: 10.1016/j.celrep.2013.09.017.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCarrier ProteinsCell Cycle ProteinsCell DifferentiationCells, CulturedEukaryotic Initiation FactorsMechanistic Target of Rapamycin Complex 1MiceMonomeric GTP-Binding ProteinsMultiprotein ComplexesNeural Stem CellsNeuropeptidesPhosphoproteinsPhosphorylationRas Homolog Enriched in Brain ProteinRibosomal Protein S6 Kinases, 90-kDaRNA InterferenceRNA, Small InterferingSirolimusTOR Serine-Threonine KinasesConceptsCap-dependent translationNeural stem cellsNSC differentiationStem Cell Self-RenewalTranslational repressor 4E-BP1P70 S6 kinase 1Neural Stem Cell Self-RenewalCell Self-RenewalRapamycin complex 1Neonatal neural stem cellsS6 kinase 1Downstream regulatory mechanismsLineage expansionSelf-RenewalRegulatory mechanismsKinase 1Kinase 1/2Constitutive activationMammalian targetCell growthStem cellsBrain sizeDifferentiationKnockdownNeuron productionNeonatal subventricular zone electroporation.
Feliciano DM, Lafourcade CA, Bordey A. Neonatal subventricular zone electroporation. Journal Of Visualized Experiments 2013 PMID: 23426329, PMCID: PMC3601042, DOI: 10.3791/50197.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsNeural stem cellsGenetic engineeringEmbryonic neural stem cellsWhole animal levelMultiple cell typesSVZ neural stem cellsMammalian systemsMolecular pathwaysCell typesStem cellsTime-effective alternativeRodent forebrainAnimal levelElectroporationEpendymal cellsInvertebratesCellsCortical developmentRobust labelingProgenyCentral nervous system disordersNervous system disordersDifferentiationPathwayVast majority
2012
Newborn cortical neurons: only for neonates?
Feliciano DM, Bordey A. Newborn cortical neurons: only for neonates? Trends In Neurosciences 2012, 36: 51-61. PMID: 23062965, PMCID: PMC3534801, DOI: 10.1016/j.tins.2012.09.004.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2011
Control of Adult-Born Neuron Production by Converging GABA and Glutamate Signals
Platel J, Bordey A. Control of Adult-Born Neuron Production by Converging GABA and Glutamate Signals. 2011, 395-406. DOI: 10.1007/978-4-431-53933-9_17.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsSteady-state levelsStem cellsNovel epigenetic controlCell-cell signalingNeuron productionStem cell proliferationEpigenetic controlNeuroblast poolProliferative cuesNeuroblast numbersNeural stem cellsMosaic expressionNeural progenitorsHigh-affinity uptake systemUptake systemAdult-born neuronsHigh turnover rateCell proliferationNeuroblastsControl of adultsNeurotransmitter releaseNegative feedback controlNeuroblast productionImmature neuronsAdult neurogenesis
2009
GABA’s Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches
Young SZ, Bordey A. GABA’s Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches. Physiology 2009, 24: 171-185. PMID: 19509127, PMCID: PMC2931807, DOI: 10.1152/physiol.00002.2009.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsStem cellsGamma-amino butyric acidProliferation of pluripotentAdult stem cellsNeural stem cellsAdult tissuesCancer cell proliferationRegulation of secretionTumor stem cellsTumor cellsCell proliferationAdult neuralProliferationCellsGABA controlPeripheral organsGABAergic signalingPeripheral nichesNervous systemMitotic activityPluripotentButyric acidNicheSignalingRegulation
2008
The astrocyte odyssey
Wang DD, Bordey A. The astrocyte odyssey. Progress In Neurobiology 2008, 86: 342-367. PMID: 18948166, PMCID: PMC2613184, DOI: 10.1016/j.pneurobio.2008.09.015.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsAdult neurogenic zonesFunction of astrocytesAstrocytic calcium wavesPopulation of astrocytesDifferent molecular identitiesNeural stem cellsGlutamate releaseNeurogenic zonesNeurogenic nicheNeuronal activityNervous systemStem cell characteristicsAstrocytesNeuronsCalcium wavesVivo roleSupport cellsStem cellsEqual numberCellsDiverse populationsMolecular identityCell characteristicsPioneer discoveriesCentral playerControl of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain
Platel J, Dave KA, Bordey A. Control of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain. The Journal Of Physiology 2008, 586: 3739-3743. PMID: 18467361, PMCID: PMC2538924, DOI: 10.1113/jphysiol.2008.155325.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsNeuroblast productionGlutamate receptorsStem cellsSteady-state levelsAdult-born neuronsNovel epigenetic controlNeural stem cellsImmature neuronsAdult neurogenesisNeurotransmitter GABAOlfactory bulbPostnatal forebrainNeuron productionNew steady-state levelStem cell proliferationHigh-affinity uptake systemCalcium elevationNeurotransmitter releaseEpigenetic controlExtracellular concentrationGlutamate signalsGABANegative feedback controlNeuroblast numbersIntercellular signalingGFAP‐GFP neural progenitors are antigenically homogeneous and anchored in their enclosed mosaic niche
Platel J, Gordon V, Heintz T, Bordey A. GFAP‐GFP neural progenitors are antigenically homogeneous and anchored in their enclosed mosaic niche. Glia 2008, 57: 66-78. PMID: 18661547, DOI: 10.1002/glia.20735.Peer-Reviewed Original ResearchConceptsBrain lipid-binding proteinGFAP-expressing cellsSubventricular zoneEGF receptorNeurogenic subventricular zoneGFP-fluorescent cellsHuman GFAP promoterProliferative marker Ki67Neural stem cellsCell typesNeurogenic zonesNG2 cellsPostnatal neurogenesisAcute slicesNeurogenic nicheOlfactory bulbTransgenic miceDifferent cell populationsRostral extensionAntigenic markersGFAP promoterProgenitor markersNeural progenitorsCell populationsCellular mosaic
2006
GFAP‐expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes
Liu X, Bolteus AJ, Balkin DM, Henschel O, Bordey A. GFAP‐expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia 2006, 54: 394-410. PMID: 16886203, DOI: 10.1002/glia.20392.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid Transport System X-AGAnimalsAnimals, NewbornAstrocytesBiomarkersCell DifferentiationCell ShapeConnexinsEpendymaGlial Fibrillary Acidic ProteinGlutamic AcidGreen Fluorescent ProteinsMembrane PotentialsMiceMice, TransgenicOrgan Culture TechniquesPatch-Clamp TechniquesPhenotypePotassiumPotassium ChannelsRecombinant Fusion ProteinsStem CellsTelencephalonConceptsGlial fibrillary acidic proteinPostnatal subventricular zoneSubventricular zoneGFAP-expressing cellsRadial gliaAstroglial marker glial fibrillary acidic proteinGlial propertiesEpendymal cellsGlutamate transportersGLT-1 glutamate transporterMarker glial fibrillary acidic proteinAMPA-type glutamate receptorsFunctional glutamate transportersFibrillary acidic proteinHuman glial fibrillary acidic proteinAdult subventricular zoneConnexin 43 expressionGap junction couplingNeural stem cellsMicroM Ba2Acute slicesAstrocytic functionsGlutamate receptorsGlial phenotypeClamp recordingsNonsynaptic GABAergic Communication and Postnatal Neurogenesis
Liu X, Bolteus A, Bordey A. Nonsynaptic GABAergic Communication and Postnatal Neurogenesis. Contemporary Neuroscience 2006, 95-104. DOI: 10.1007/978-1-59745-021-8_9.ChaptersFunction of GABASubventricular zonePostnatal neurogenesisNeuronal precursorsNeuron-glial networksSVZ stem cellsStem cellsNeural stem cellsLocal GABAergicNonsynaptic communicationGABAergic systemSynaptic contactsΓ-aminobutyric acidSVZ cellsSVZ precursorsSubependymal zoneGABANeurogenesisCell proliferationCellsEmbryonic cell proliferationGABAergicBrain