1995
REPORT on the Fourth International Workshop on Chromosome 9: held at Williamsburg, Virginia, USA, April 23–25, 1995
PERICAK‐VANCE M, BALE A, HAINES J, KWIATKOWSKI D, PILZ A, SLAUGENHAUPT S, WHITE J, EDWARDS J, MARCHUK D, OLOPADE O, ATTWOOD J, POVEY S. REPORT on the Fourth International Workshop on Chromosome 9: held at Williamsburg, Virginia, USA, April 23–25, 1995. Annals Of Human Genetics 1995, 59: 347-365. PMID: 8579331, DOI: 10.1111/j.1469-1809.1995.tb00756.x.Peer-Reviewed Original ResearchThe CEPH Consortium Linkage Map of Human Chromosome 11
Litt M, Kramer P, Kort E, Fain P, Cox S, Root D, White R, Weissenbach J, Donis-Keller H, Gatti R, Weber J, Nakamura Y, Julier C, Hayashi K, Spurr N, Dean M, Mandel J, Kidd K, Kruse T, Retief A, Bale A, Meo T, Vergnaud G, Warren S, Willard H. The CEPH Consortium Linkage Map of Human Chromosome 11. Genomics 1995, 27: 101-112. PMID: 7665156, DOI: 10.1006/geno.1995.1011.Peer-Reviewed Original ResearchCEPH Consortium Map of Chromosome 14
Cox D, Billingsley G, Bale A, Donis-Keller H, Edwards J, Litt M, Mcbride W, Persichetti F, Spurr N, Weber J, Weissenbach J, White R. CEPH Consortium Map of Chromosome 14. Cytogenetic And Genome Research 1995, 69: 175-178. PMID: 7698005, DOI: 10.1159/000133955.Peer-Reviewed Original Research
1994
Nephrogenic diabetes insipidus: an X chromosome-linked dominant inheritance pattern with a vasopressin type 2 receptor gene that is structurally normal.
Friedman E, Bale A, Carson E, Boson W, Nordenskjöld M, Ritzén M, Ferreira P, Jammal A, De Marco L. Nephrogenic diabetes insipidus: an X chromosome-linked dominant inheritance pattern with a vasopressin type 2 receptor gene that is structurally normal. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 8457-8461. PMID: 8078903, PMCID: PMC44625, DOI: 10.1073/pnas.91.18.8457.Peer-Reviewed Original ResearchConceptsVasopressin type 2 receptor geneInheritance patternSixth transmembrane domainVasopressin type 2 receptorDisease-related genesNephrogenic diabetes insipidusGradient gel electrophoresisTransmembrane domainV2R genesType 2 receptor geneX chromosomeXq28 markersDominant inheritance patternGenesDNA sequencingDirect DNA sequencingReceptor geneGel electrophoresisMutationsUnrelated kindredsAdditional familiesRecessive mannerDisease pathogenesisLarge BrazilianAffected individualsFine Mapping of the Locus for Nevoid Basal Cell Carcinoma Syndrome on Chromosome 9q
Compton J, Kearns K, Bale S, Goldstein A, Turner M, Bale A, McBride O. Fine Mapping of the Locus for Nevoid Basal Cell Carcinoma Syndrome on Chromosome 9q. Journal Of Investigative Dermatology 1994, 103: 178-181. PMID: 8040607, DOI: 10.1111/1523-1747.ep12392682.Peer-Reviewed Original ResearchMapping the gene for hereditary hyperparathyroidism and prolactinoma (MEN1Burin) to chromosome 11q: evidence for a founder effect in patients from Newfoundland.
Petty E, Green J, Marx S, Taggart R, Farid N, Bale A. Mapping the gene for hereditary hyperparathyroidism and prolactinoma (MEN1Burin) to chromosome 11q: evidence for a founder effect in patients from Newfoundland. American Journal Of Human Genetics 1994, 54: 1060-6. PMID: 7911003, PMCID: PMC1918205.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceCarcinoid TumorChildChromosome MappingChromosomes, Human, Pair 11FemaleGenetic LinkageGenetic MarkersHaplotypesHumansHyperparathyroidismMaleMolecular Sequence DataMultiple Endocrine NeoplasiaNewfoundland and LabradorNorthwestern United StatesParentsPedigreePituitary NeoplasmsProlactinomaSyndromeLocalization of the gene for the nevoid basal cell carcinoma syndrome.
Goldstein A, Stewart C, Bale A, Bale S, Dean M. Localization of the gene for the nevoid basal cell carcinoma syndrome. American Journal Of Human Genetics 1994, 54: 765-73. PMID: 7909984, PMCID: PMC1918262.Peer-Reviewed Original Research
1992
The CEPH consortium linkage map of human chromosome 2
Spurr N, Cox S, Bryant S, Attwood J, Robson E, Shields D, Steinbrueck T, Jenkins T, Murray J, Kidd K, Summar M, Tsipouras P, Retief A, Kruse T, Bale A, Vergnaud G, Weber J, McBride O, Donis-Keller H, White R. The CEPH consortium linkage map of human chromosome 2. Genomics 1992, 14: 1055-1063. PMID: 1478647, DOI: 10.1016/s0888-7543(05)80129-6.Peer-Reviewed Original ResearchREPORT on the First International Workshop on Chromosome 9 held at Girton College Cambridge, UK, 22–24 March, 1992
POVEY S, SMITH M, HAINES J, KWIATKOWSKI D, FOUNTAIN J, BALE A, ABBOTT C, JACKSON I, LAWRIE M, HULTÉN M. REPORT on the First International Workshop on Chromosome 9 held at Girton College Cambridge, UK, 22–24 March, 1992. Annals Of Human Genetics 1992, 56: 167-182. PMID: 1449236, DOI: 10.1111/j.1469-1809.1992.tb01145.x.Peer-Reviewed Original ResearchDevelopmental defects in gorlin syndrome related to a putative tumor suppressor gene on chromosome 9
Gailani M, Bale S, Leffell D, DiGiovanna J, Peck G, Poliak S, Drum M, Pastakia B, McBride O, Kase R, Greene M, Mulvihill J, Bale A. Developmental defects in gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell 1992, 69: 111-117. PMID: 1348213, DOI: 10.1016/0092-8674(92)90122-s.Peer-Reviewed Original ResearchConceptsBasal cell carcinomaSporadic basal cell carcinomasCell carcinomaLoss of heterozygosityGorlin syndromeHereditary tumorsTumor suppressor geneHereditary basal cell carcinomasMultiple congenital anomaliesSuppressor geneAutosomal dominant disorderOvarian fibromaCongenital anomaliesCarcinomaGermline mutationsHereditary disorderPutative tumor suppressor geneDevelopmental defectsSyndromeGorlin syndrome geneDominant disorderAllelic lossGenetic linkage studiesTumorsTumor suppressorRegional localization of the selenocysteine tRNA gene (TRSP) on human chromosome 19
Mitchell A, Bale A, Lee B, Hatfield D, Harley H, Rundle S, Fan Y, Fukushima Y, Shows T, McBride O. Regional localization of the selenocysteine tRNA gene (TRSP) on human chromosome 19. Cytogenetic And Genome Research 1992, 61: 117-120. PMID: 1395717, DOI: 10.1159/000133385.Peer-Reviewed Original Research
1991
Localization of a DNA segment encompassing four tRNA genes to human chromosome 14q11 and its use as an anchor locus for linkage analysis
Mitchell A, Bale A, Wang-ge M, Yi H, White R, Pirtle R, McBride O. Localization of a DNA segment encompassing four tRNA genes to human chromosome 14q11 and its use as an anchor locus for linkage analysis. Genomics 1991, 11: 1063-1070. PMID: 1686015, DOI: 10.1016/0888-7543(91)90033-b.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceChromosome MappingChromosomes, Human, Pair 14FemaleGenetic LinkageGenetic MarkersHumansMaleMolecular Sequence DataMultigene FamilyNucleic Acid HybridizationPolymorphism, Restriction Fragment LengthRestriction MappingRNA, TransferRNA, Transfer, LeuRNA, Transfer, ProRNA, Transfer, ThrConceptsT cell receptor alphaTRNA genesAnchor lociChromosomal locationHuman/rodent somatic cell hybridsRodent somatic cell hybridsLinkage analysisChromosome 14Human tRNA genesSomatic cell hybridsGenetic linkage analysisTRNA clusterMYH7 locusGene clusterGenomic fragmentCell hybridsCEPH pedigreesChromosome 14q11Southern analysisDNA segmentsGene locusAnonymous probesLociInformative membersSitu hybridizationA contiguous linkage map of chromosome 13q with 39 distinct loci separated on average by 5.1 centimorgans
Bowcock A, Farrer L, Hebert J, Bale A, Cavalli-Sforza L. A contiguous linkage map of chromosome 13q with 39 distinct loci separated on average by 5.1 centimorgans. Genomics 1991, 11: 517-529. PMID: 1685473, DOI: 10.1016/0888-7543(91)90058-m.Peer-Reviewed Original ResearchConceptsLinkage mapDistinct lociChromosome 13qExcess of recombinationMean genetic distanceGenetic distanceAlpha-satellite probeFemale recombinationAdjacent lociFamily DNAChromosomal armsDisease locusCEPH family DNAsLociChromosome 13Enzyme combinationsComplete mapAdditional markersRecombinationCentimorgansGenesFold excessDNASequenceProbePredictive testing for Wilson's disease using tightly linked and flanking DNA markers.
Farrer L, Bowcock A, Hebert J, Bonne-Tamir B, Sternlieb I, Giagheddu M, George-Hyslop P, Frydman M, Lossner J, Demelia L, Carcassi C, Lee R, Beker R, Bale A, Donis-Keller H, Scheinberg I, Cavalli-Sforza L. Predictive testing for Wilson's disease using tightly linked and flanking DNA markers. Neurology 1991, 41: 992-9. PMID: 2067662, DOI: 10.1212/wnl.41.7.992.Peer-Reviewed Original ResearchLocalization of CYP2F1 by multipoint linkage analysis and pulsed-field gel electrophoresis
Bale A, Mitchell A, Gonzalez F, McBride O. Localization of CYP2F1 by multipoint linkage analysis and pulsed-field gel electrophoresis. Genomics 1991, 10: 284-286. PMID: 2045106, DOI: 10.1016/0888-7543(91)90514-f.Peer-Reviewed Original ResearchThe CEPH consortium linkage map of human chromosome 1
Dracopoli N, O'Connell P, Elsner T, Lalouel J, White R, Buetow K, Nishimura D, Murray J, Helms C, Mishra S, Donis-Keller H, Hall J, Lee M, King M, Attwood J, Morton N, Robson E, Mahtani M, Willard H, Royle N, Patel I, Jeffreys A, Verga V, Jenkins T, Weber J, Mitchell A, Bale A. The CEPH consortium linkage map of human chromosome 1. Genomics 1991, 9: 686-700. PMID: 2037294, DOI: 10.1016/0888-7543(91)90362-i.Peer-Reviewed Original ResearchTight linkage of the human c-erbAβ gene with the syndrome of generalized thyroid hormone resistance is present in multiple kindreds
Fein H, Burman K, Djuh Y, Usala S, Bale A, Weintraub B, Smallridge R. Tight linkage of the human c-erbAβ gene with the syndrome of generalized thyroid hormone resistance is present in multiple kindreds. Journal Of Endocrinological Investigation 1991, 14: 219-223. PMID: 1677017, DOI: 10.1007/bf03346792.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceChromosome MappingDeoxyribonuclease BamHIDeoxyribonucleases, Type II Site-SpecificDrug ResistanceErbB ReceptorsGenetic LinkageHumansMolecular Sequence DataMutationPedigreePolymorphism, Restriction Fragment LengthProto-Oncogene ProteinsReceptors, Thyroid HormoneSyndromeThyroid DiseasesThyroid HormonesThyrotropinThyroxineTriiodothyronine
1990
A base mutation of the C-erbA beta thyroid hormone receptor in a kindred with generalized thyroid hormone resistance. Molecular heterogeneity in two other kindreds.
Usala S, Tennyson G, Bale A, Lash R, Gesundheit N, Wondisford F, Accili D, Hauser P, Weintraub B. A base mutation of the C-erbA beta thyroid hormone receptor in a kindred with generalized thyroid hormone resistance. Molecular heterogeneity in two other kindreds. Journal Of Clinical Investigation 1990, 85: 93-100. PMID: 2153155, PMCID: PMC296391, DOI: 10.1172/jci114438.Peer-Reviewed Original ResearchConceptsGeneralized thyroid hormone resistanceC-erbA betaThyroid hormone resistanceHormone resistanceBase substitutionsT3-binding domainC-erbA beta geneThyroid hormone receptor genesBeta thyroid hormone receptorThyroid hormone receptorC-erbA beta thyroid hormone receptorHormone receptor geneProline codonsGenomic DNAThyroid hormone actionAltered baseBeta cDNASecondary structureBeta geneNuclear receptorsBase mutationMaximum logarithmPosition 448Receptor geneBeta receptors
1988
Tight Linkage between the Syndrome of Generalized Thyroid Hormone Resistance and the Human c-erbAβ Gene
Usala S, Bale A, Gesundheit N, Weinberger C, Lash R, Wondisford F, McBride O, Weintraub B. Tight Linkage between the Syndrome of Generalized Thyroid Hormone Resistance and the Human c-erbAβ Gene. Endocrinology 1988, 2: 1217-1220. PMID: 2905763, DOI: 10.1210/mend-2-12-1217.Peer-Reviewed Original ResearchConceptsThyroid hormone receptorGeneralized thyroid hormone resistanceBiological functionsC-erbA beta geneC-erbA genesHormone receptorsMutant phenotypeGene familyC-erbA betaC-erbA alphaRestriction enzyme analysisGene productsChromosome 3Multiple cDNAsThyroid hormone resistanceHuman syndromesTight linkageBeta locusGenesBeta geneNuclear receptorsLarge deletionsHormone resistanceEnzyme analysisCertain kindreds
1986
Linkage relationships among four 11p markers in the Utah dataset
Bale S, Harris E, Bale A. Linkage relationships among four 11p markers in the Utah dataset. Genetic Epidemiology. Supplement 1986, 3: 117-121. PMID: 3471653, DOI: 10.1002/gepi.1370030718.Peer-Reviewed Original Research