2020
Targeting PD-L1 Initiates Effective Antitumor Immunity in a Murine Model of Cushing Disease
Kemeny HR, Elsamadicy AA, Farber SH, Champion CD, Lorrey SJ, Chongsathidkiet P, Woroniecka KI, Cui X, Shen SH, Rhodin KE, Tsvankin V, Everitt J, Sanchez-Perez L, Healy P, McLendon RE, Codd PJ, Dunn IF, Fecci PE. Targeting PD-L1 Initiates Effective Antitumor Immunity in a Murine Model of Cushing Disease. Clinical Cancer Research 2020, 26: 1141-1151. PMID: 31744830, PMCID: PMC7809696, DOI: 10.1158/1078-0432.ccr-18-3486.Peer-Reviewed Original ResearchConceptsCushing's diseasePituitary adenomasPD-L1PD1/PD-L1 axisAdrenocorticotropic hormone plasma levelsTumor-infiltrating T cellsRefractory Cushing's diseasePD-L1 axisPD-L1 expressionCheckpoint blockade therapyNovel therapeutic optionsHormone plasma levelsElevated cortisol levelsLymphocytic hypophysitisAntitumor immunityBlockade therapyCheckpoint blockadeCheckpoint expressionNumerous sequelaeSignificant morbidityTherapeutic optionsPlasma levelsPreclinical modelsT cellsSuccessful therapy
2018
T-Cell Exhaustion Signatures Vary with Tumor Type and Are Severe in Glioblastoma
Woroniecka K, Chongsathidkiet P, Rhodin K, Kemeny H, Dechant C, Farber SH, Elsamadicy AA, Cui X, Koyama S, Jackson C, Hansen LJ, Johanns TM, Sanchez-Perez L, Chandramohan V, Yu YA, Bigner DD, Giles A, Healy P, Dranoff G, Weinhold KJ, Dunn GP, Fecci PE. T-Cell Exhaustion Signatures Vary with Tumor Type and Are Severe in Glioblastoma. Clinical Cancer Research 2018, 24: 4175-4186. PMID: 29437767, PMCID: PMC6081269, DOI: 10.1158/1078-0432.ccr-17-1846.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAnimalsCD8-Positive T-LymphocytesFemaleFlow CytometryGene Expression Regulation, NeoplasticGlioblastomaHumansInterferon-gammaInterleukin-2Lymphocytes, Tumor-InfiltratingMaleMiceMiddle AgedReceptors, Antigen, T-Cell, alpha-betaT-LymphocytesTumor MicroenvironmentTumor Necrosis Factor-alphaConceptsT cell dysfunctionMultiple immune checkpointsT cellsExhaustion signaturesImmune checkpointsT cell exhaustion signaturesTumor-specific T cellsEffective immunotherapeutic strategiesImmune checkpoint blockadeT cell exhaustionImmunocompetent murine modelT cell hyporesponsivenessPeripheral blood lymphocytesClin Cancer ResPoststimulation levelsCheckpoint blockadeImmunotherapeutic strategiesCytokines IFNγHallmark of glioblastomaInhibitory receptorsTIL functionTumor locationMurine glioblastomaBlood lymphocytesMurine model
2017
The Safety of available immunotherapy for the treatment of glioblastoma
Farber SH, Elsamadicy AA, Atik AF, Suryadevara CM, Chongsathidkiet P, Fecci PE, Sampson JH. The Safety of available immunotherapy for the treatment of glioblastoma. Expert Opinion On Drug Safety 2017, 16: 277-287. PMID: 27989218, PMCID: PMC5404815, DOI: 10.1080/14740338.2017.1273898.Peer-Reviewed Original ResearchConceptsClinical trialsCurrent immunotherapiesCommon malignant primary brain tumorMalignant primary brain tumorAdoptive T-cell immunotherapyReviewed clinical trialsRole of immunotherapyImmune checkpoint blockadeMaximal surgical resectionOngoing clinical trialsPrimary brain tumorsT-cell immunotherapyTreatment of glioblastomaAdjuvant chemoradiationAvailable immunotherapiesCheckpoint blockadeCytokine therapySurgical resectionImmunotherapeutic approachesCell immunotherapyPatient survivalRecurrent glioblastomaVaccination strategiesSafety dataBrain tumors