2020
Nanotechnology for catalysis and solar energy conversion
Banin U, Waiskopf N, Hammarstrm L, Boschloo G, Freitag M, Johansson E, S J, Tian H, Johnston M, Herz L, Milot R, Kanatzidis M, Ke W, Spanopoulos I, Kohlstedt K, Schatz G, Lewis N, Meyer T, Nozik A, Beard M, Armstrong F, Megarity C, Schmuttenmaer C, Batista V, Brudvig G. Nanotechnology for catalysis and solar energy conversion. Nanotechnology 2020, 32: 042003. PMID: 33155576, DOI: 10.1088/1361-6528/abbce8.Peer-Reviewed Original ResearchDye-sensitized solar cellsPerovskite solar cellsSolar energy conversionMultiple exciton generationSolar cellsEnergy conversionOrganic photovoltaicsNanoscale characterization methodsNanoscale material characterizationApplication of nanotechnologySolar energy conversion efficiencySolar water splittingConversion efficiencyStructure-property relationshipsNanomaterial synthesisSemiconductor nanoparticlesSingle nanoparticlesScalable manufacturingEnergy conversion efficiencySemiconductor nanostructuresWater splittingFuel conversion efficiencySmart engineeringHybrid halide perovskitesBio-catalysis
2006
Coherent control of tunnelling dynamics in functionalized semiconductor nanostructures: a quantum-control scenario based on stochastic unitary pulses
Rego L, Abuabara S, Batista V. Coherent control of tunnelling dynamics in functionalized semiconductor nanostructures: a quantum-control scenario based on stochastic unitary pulses. Journal Of Modern Optics 2006, 53: 2519-2532. DOI: 10.1080/09500340600952036.Peer-Reviewed Original ResearchQuantum control scenariosCoherent controlSemiconductor nanostructuresCoherent control scenarioCoherent quantum evolutionWave packet componentsQuartic double-well potentialDouble-well potentialQuantum evolutionTunneling dynamicsParticle tunnelingElectronic excitationPulse fieldInterference phenomenaTunneling barrierExchange energyTunnelingPulsesNanostructuresControl scenariosDynamicsExcitationEnergyFieldArchetype model
2005
Coherent optical control of electronic excitations in functionalized semiconductor nanostructures
Rego L, Abuabara S, Batista V. Coherent optical control of electronic excitations in functionalized semiconductor nanostructures. Quantum Information And Computation 2005, 5: 318-334. DOI: 10.26421/qic5.45-4.Peer-Reviewed Original ResearchSemiconductor nanostructuresCoherent optical controlCoherent quantum stateSpatial Rabi oscillationsElectro-optic devicesAvailable semiconductor materialsBasic model componentsRabi oscillationsCoherent excitationOptical controlQuantum statesElectronic excitationPresented computational methodVacuum conditionsSemiconductor materialsElectron-hole transferNanostructuresAnatase nanostructuresExcitationComputational methodsQuantumLaserModel componentsCatechol moleculesOscillationsModel study of coherent quantum dynamics of hole states in functionalized semiconductor nanostructures
Rego L, Abuabara S, Batista V. Model study of coherent quantum dynamics of hole states in functionalized semiconductor nanostructures. The Journal Of Chemical Physics 2005, 122: 154709. PMID: 15945658, DOI: 10.1063/1.1873712.Peer-Reviewed Original ResearchSemiconductor band gapHole statesBand gapMixed quantum-classical methodDensity functional theory molecular dynamics simulationsCoherent quantum dynamicsInterfacial electron transferTheory molecular dynamics simulationsQuantum-classical methodProcess of photoexcitationHundreds of picosecondsElectron-hole pair separationQuantum dynamicsElectronic coherenceNuclear dynamicsSemiconductor nanostructuresInterband statesIntrinsic decoherenceElectronic statesRelaxation dynamicsHole tunnelingExperimental interestVacuum conditionsMolecular adsorbatesElectron transfer