2023
S-Nitrosylation-mediated dysfunction of TCA cycle enzymes in synucleinopathy studied in postmortem human brains and hiPSC-derived neurons
Doulias P, Yang H, Andreyev A, Dolatabadi N, Scott H, K Raspur C, Patel P, Nakamura T, Tannenbaum S, Ischiropoulos H, Lipton S. S-Nitrosylation-mediated dysfunction of TCA cycle enzymes in synucleinopathy studied in postmortem human brains and hiPSC-derived neurons. Cell Chemical Biology 2023, 30: 965-975.e6. PMID: 37478858, PMCID: PMC10530441, DOI: 10.1016/j.chembiol.2023.06.018.Peer-Reviewed Original ResearchConceptsTCA cycleLewy body dementiaAberrant S-nitrosylationMitochondrial metabolic dysfunctionTricarboxylic acid cyclePluripotent stem cellsMitochondrial energy metabolismParkinson's diseaseHiPSC-derived neuronsTCA enzymesMetabolic flux experimentsS-nitrosylationAcid cycleCell deathNeuronal cell deathΑ-ketoglutaratePostmortem human brainEnergy metabolismStem cellsLBD brainsDendritic lengthBioenergetic failureMetabolic dysfunctionSynaptic integrityPathophysiological relevance
2022
S-Nitrosylation of p62 Inhibits Autophagic Flux to Promote α-Synuclein Secretion and Spread in Parkinson's Disease and Lewy Body Dementia
Oh C, Dolatabadi N, Cieplak P, Diaz-Meco M, Moscat J, Nolan J, Nakamura T, Lipton S. S-Nitrosylation of p62 Inhibits Autophagic Flux to Promote α-Synuclein Secretion and Spread in Parkinson's Disease and Lewy Body Dementia. Journal Of Neuroscience 2022, 42: 3011-3024. PMID: 35169022, PMCID: PMC8985870, DOI: 10.1523/jneurosci.1508-21.2022.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-SynucleinAnimalsAutophagyFemaleHumansInduced Pluripotent Stem CellsLewy Body DiseaseMaleMiceMice, TransgenicNeuronsParkinson DiseaseProtein SRNA-Binding ProteinsConceptsLewy body dementiaParkinson's diseaseAutophagic fluxInhibits autophagic fluxΑ-synucleinPluripotent stem cell-derived neuronsStem cell-derived neuronsΑ-synuclein secretionS-nitrosylationCell-derived neuronsHuman postmortem brainProtein S-nitrosylationΑ-synuclein aggregationPostmortem brainsConsequent secretionPathologic pathwaysNervous systemAdaptor protein p62Autophagic inhibitionDysfunctional autophagyNeurodegenerative disordersDiseaseIndividual neuronsDementiaSecretion
2021
Emerging hiPSC Models for Drug Discovery in Neurodegenerative Diseases
Trudler D, Ghatak S, Lipton S. Emerging hiPSC Models for Drug Discovery in Neurodegenerative Diseases. International Journal Of Molecular Sciences 2021, 22: 8196. PMID: 34360966, PMCID: PMC8347370, DOI: 10.3390/ijms22158196.Peer-Reviewed Original ResearchMeSH KeywordsAlzheimer DiseaseDrug DiscoveryHumansInduced Pluripotent Stem CellsNeuroprotective AgentsPrecision MedicineConceptsAmyotrophic lateral sclerosisNeurodegenerative diseasesParkinson's diseaseAnimal modelsAlzheimer's diseaseEffective disease-modifying therapiesHuntington's diseaseDisease-modifying therapiesSeverity of symptomsHuman samplesHiPSC-derived neural cellsHealthy donorsEffective treatmentLateral sclerosisEconomic burdenHuman-induced pluripotent stem cell (hiPSC) technologyProgressive deteriorationNeural functionDiseaseHiPSC modelsNeural cellsPluripotent stem cell (iPSC) technologyDisease mechanismsPoor accessMillions of peopleSoluble α-synuclein–antibody complexes activate the NLRP3 inflammasome in hiPSC-derived microglia
Trudler D, Nazor K, Eisele Y, Grabauskas T, Dolatabadi N, Parker J, Sultan A, Zhong Z, Goodwin M, Levites Y, Golde T, Kelly J, Sierks M, Schork N, Karin M, Ambasudhan R, Lipton S. Soluble α-synuclein–antibody complexes activate the NLRP3 inflammasome in hiPSC-derived microglia. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2025847118. PMID: 33833060, PMCID: PMC8054017, DOI: 10.1073/pnas.2025847118.Peer-Reviewed Original ResearchConceptsHuman microgliaLike receptor family pyrinFibrillar αSynA9 dopaminergic neuronsInterleukin-1β secretionCaspase-1 activationMicroglial activationFamily pyrinAntibody therapyNeuronal deathParkinson's diseaseMicrogliaMouse brainΑ-synucleinDual stimulationMitochondrial damageΑSynAntibodiesInflammationNLRP3Cognate antibodiesHuman brainDiseaseNeuronsStem cellsS-nitrosylated TDP-43 triggers aggregation, cell-to-cell spread, and neurotoxicity in hiPSCs and in vivo models of ALS/FTD
Pirie E, Oh C, Zhang X, Han X, Cieplak P, Scott H, Deal A, Ghatak S, Martinez F, Yeo G, Yates J, Nakamura T, Lipton S. S-nitrosylated TDP-43 triggers aggregation, cell-to-cell spread, and neurotoxicity in hiPSCs and in vivo models of ALS/FTD. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2021368118. PMID: 33692125, PMCID: PMC7980404, DOI: 10.1073/pnas.2021368118.Peer-Reviewed Original ResearchConceptsProtein misfolding/aggregationCell spreadMisfolding/aggregationRNA-binding activityOligomerization/aggregationHuman-induced pluripotent stem cellsProtein TDP-43Pluripotent stem cellsALS/FTDTDP-43 aggregationTDP-43Cognate proteinProtein aggregationS-nitrosylationRare genetic mutationsCell-based modelFTD disordersAmyotrophic lateral sclerosisAbsence of mutationsTriggers aggregationStem cellsGenetic mutationsDisulfide linkagesNitrosative stressNeurodegenerative disordersα-Synuclein Oligomers Induce Glutamate Release from Astrocytes and Excessive Extrasynaptic NMDAR Activity in Neurons, Thus Contributing to Synapse Loss
Trudler D, Sanz-Blasco S, Eisele Y, Ghatak S, Bodhinathan K, Akhtar M, Lynch W, Piña-Crespo J, Talantova M, Kelly J, Lipton S. α-Synuclein Oligomers Induce Glutamate Release from Astrocytes and Excessive Extrasynaptic NMDAR Activity in Neurons, Thus Contributing to Synapse Loss. Journal Of Neuroscience 2021, 41: 2264-2273. PMID: 33483428, PMCID: PMC8018774, DOI: 10.1523/jneurosci.1871-20.2020.Peer-Reviewed Original ResearchConceptsLewy body dementiaExtrasynaptic NMDA receptorsSynaptic damageParkinson's diseaseNeuronal lossLewy bodiesNMDAR activityDisease progressionΑSyn oligomersPotential disease-modifying interventionsNeurodegenerative diseasesΑ-synucleinExtrasynaptic NMDAR activitySynaptic NMDAR activityDisease-modifying interventionsPatch-clamp recordingsMajor neuropathological characteristicsSynaptic lossAstrocytic glutamateGlutamate releaseSynapse lossSpine lossExtrasynaptic NMDARsFemale miceHippocampal slices
2019
Mechanisms of hyperexcitability in Alzheimer’s disease hiPSC-derived neurons and cerebral organoids vs isogenic controls
Ghatak S, Dolatabadi N, Trudler D, Zhang X, Wu Y, Mohata M, Ambasudhan R, Talantova M, Lipton S. Mechanisms of hyperexcitability in Alzheimer’s disease hiPSC-derived neurons and cerebral organoids vs isogenic controls. ELife 2019, 8: e50333. PMID: 31782729, PMCID: PMC6905854, DOI: 10.7554/elife.50333.Peer-Reviewed Original ResearchConceptsDisease brainNeuronal culturesHuman Alzheimer's disease brainCerebral organoidsAD-related mutationsHiPSC-derived neuronsTransgenic AD miceInhibitory synaptic activityMechanisms of hyperexcitabilityAlzheimer's disease brainAberrant electrical activitySodium current densityAD micePathophysiological correlatesSynaptic dysfunctionAD pathophysiologyExcessive excitabilitySynaptic activityObserved hyperexcitabilityCognitive declineBursting activityHyperexcitabilityPresenilin 1Electrical activityNeurite length