2023
Apoptotic cell death in disease—Current understanding of the NCCD 2023
Vitale I, Pietrocola F, Guilbaud E, Aaronson S, Abrams J, Adam D, Agostini M, Agostinis P, Alnemri E, Altucci L, Amelio I, Andrews D, Aqeilan R, Arama E, Baehrecke E, Balachandran S, Bano D, Barlev N, Bartek J, Bazan N, Becker C, Bernassola F, Bertrand M, Bianchi M, Blagosklonny M, Blander J, Blandino G, Blomgren K, Borner C, Bortner C, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard R, Calin G, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan F, Chen G, Chen Q, Chen Y, Cheng E, Chipuk J, Cidlowski J, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz J, Czabotar P, D’Angiolella V, Daugaard M, Dawson T, Dawson V, De Maria R, De Strooper B, Debatin K, Deberardinis R, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon S, Dynlacht B, El-Deiry W, Elrod J, Engeland K, Fimia G, Galassi C, Ganini C, Garcia-Saez A, Garg A, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green D, Greene L, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick J, Haupt Y, He S, Heery D, Hengartner M, Hetz C, Hildeman D, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost P, Kanneganti T, Karin M, Kashkar H, Kaufmann T, Kelly G, Kepp O, Kimchi A, Kitsis R, Klionsky D, Kluck R, Krysko D, Kulms D, Kumar S, Lavandero S, Lavrik I, Lemasters J, Liccardi G, Linkermann A, Lipton S, Lockshin R, López-Otín C, Luedde T, MacFarlane M, Madeo F, Malorni W, Manic G, Mantovani R, Marchi S, Marine J, Martin S, Martinou J, Mastroberardino P, Medema J, Mehlen P, Meier P, Melino G, Melino S, Miao E, Moll U, Muñoz-Pinedo C, Murphy D, Niklison-Chirou M, Novelli F, Núñez G, Oberst A, Ofengeim D, Opferman J, Oren M, Pagano M, Panaretakis T, Pasparakis M, Penninger J, Pentimalli F, Pereira D, Pervaiz S, Peter M, Pinton P, Porta G, Prehn J, Puthalakath H, Rabinovich G, Rajalingam K, Ravichandran K, Rehm M, Ricci J, Rizzuto R, Robinson N, Rodrigues C, Rotblat B, Rothlin C, Rubinsztein D, Rudel T, Rufini A, Ryan K, Sarosiek K, Sawa A, Sayan E, Schroder K, Scorrano L, Sesti F, Shao F, Shi Y, Sica G, Silke J, Simon H, Sistigu A, Stephanou A, Stockwell B, Strapazzon F, Strasser A, Sun L, Sun E, Sun Q, Szabadkai G, Tait S, Tang D, Tavernarakis N, Troy C, Turk B, Urbano N, Vandenabeele P, Vanden Berghe T, Vander Heiden M, Vanderluit J, Verkhratsky A, Villunger A, von Karstedt S, Voss A, Vousden K, Vucic D, Vuri D, Wagner E, Walczak H, Wallach D, Wang R, Wang Y, Weber A, Wood W, Yamazaki T, Yang H, Zakeri Z, Zawacka-Pankau J, Zhang L, Zhang H, Zhivotovsky B, Zhou W, Piacentini M, Kroemer G, Galluzzi L. Apoptotic cell death in disease—Current understanding of the NCCD 2023. Cell Death & Differentiation 2023, 30: 1097-1154. PMID: 37100955, PMCID: PMC10130819, DOI: 10.1038/s41418-023-01153-w.Peer-Reviewed Original ResearchConceptsRegulated cell deathCell deathAdult tissue homeostasisMultiple human disordersApoptotic cell deathOrganismal developmentOrganismal homeostasisMolecular machineryContext of diseaseApoptotic apparatusMammalian systemsCaspase familyTissue homeostasisGenetic strategiesHuman disordersNomenclature CommitteeApoptosisHomeostasisMachineryOncogenesisProteaseCell lossActivationFamilyDeath
2014
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M, Candi E, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, Di Daniele N, Dixit VM, Dynlacht BD, El-Deiry WS, Fimia GM, Flavell RA, Fulda S, Garrido C, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Joseph B, Jost PJ, Kaufmann T, Kepp O, Klionsky DJ, Knight RA, Kumar S, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lugli E, Madeo F, Malorni W, Marine JC, Martin SJ, Martinou JC, Medema JP, Meier P, Melino S, Mizushima N, Moll U, Muñoz-Pinedo C, Nuñez G, Oberst A, Panaretakis T, Penninger JM, Peter ME, Piacentini M, Pinton P, Prehn JH, Puthalakath H, Rabinovich GA, Ravichandran KS, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Shi Y, Simon HU, Stockwell BR, Szabadkai G, Tait SW, Tang HL, Tavernarakis N, Tsujimoto Y, Vanden Berghe T, Vandenabeele P, Villunger A, Wagner EF, Walczak H, White E, Wood WG, Yuan J, Zakeri Z, Zhivotovsky B, Melino G, Kroemer G. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death & Differentiation 2014, 22: 58-73. PMID: 25236395, PMCID: PMC4262782, DOI: 10.1038/cdd.2014.137.Peer-Reviewed Original ResearchConceptsRegulated cell deathAccidental cell deathCell deathCellular demiseCourse of apoptosisAdaptive responseExecutioner caspasesMammalian systemsLethal signalPhysiologic programGenetic interventionsNomenclature CommitteeBiochemical phenomenaCytoprotective effectsMechanical stimuliCaspasesTransductionBiochemical correlatesApoptosisCytoprotectionDeathCellsActivationResponseVariants
2011
Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012
Galluzzi L, Vitale I, Abrams J, Alnemri E, Baehrecke E, Blagosklonny M, Dawson T, Dawson V, El-Deiry W, Fulda S, Gottlieb E, Green D, Hengartner M, Kepp O, Knight R, Kumar S, Lipton S, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter M, Piacentini M, Rubinsztein D, Shi Y, Simon H, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death & Differentiation 2011, 19: 107-120. PMID: 21760595, PMCID: PMC3252826, DOI: 10.1038/cdd.2011.96.Peer-Reviewed Original ResearchConceptsCell death subroutinesCell death modalitiesCell deathDeath modalitiesMitotic catastropheMolecular definitionCell death morphologyAutophagic cell deathUtility of expressionNomenclature CommitteeExtrinsic apoptosisDeath morphologyRegulated necrosisIntrinsic apoptosisGenetic explorationFunctional classificationApoptosisBiochemical featuresVivo settingsSubstantial progressExpressionDeath
2009
Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes
Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, Bazan NG, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Castedo M, Cidlowski JA, Ciechanover A, Cohen GM, De Laurenzi V, De Maria R, Deshmukh M, Dynlacht BD, El-Deiry WS, Flavell RA, Fulda S, Garrido C, Golstein P, Gougeon ML, Green DR, Gronemeyer H, Hajnóczky G, Hardwick JM, Hengartner MO, Ichijo H, Jäättelä M, Kepp O, Kimchi A, Klionsky DJ, Knight RA, Kornbluth S, Kumar S, Levine B, Lipton SA, Lugli E, Madeo F, Malorni W, Marine J, Martin SJ, Medema JP, Mehlen P, Melino G, Moll UM, Morselli E, Nagata S, Nicholson DW, Nicotera P, Nuñez G, Oren M, Penninger J, Pervaiz S, Peter ME, Piacentini M, Prehn JH, Puthalakath H, Rabinovich GA, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Scorrano L, Simon HU, Steller H, Tschopp J, Tsujimoto Y, Vandenabeele P, Vitale I, Vousden KH, Youle RJ, Yuan J, Zhivotovsky B, Kroemer G. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death & Differentiation 2009, 16: 1093-1107. PMID: 19373242, PMCID: PMC2757140, DOI: 10.1038/cdd.2009.44.Peer-Reviewed Original ResearchConceptsCell deathNumerous human diseasesDead cellsHigher eukaryotesModel organismsCellular demisePhysiological processesHuman diseasesInterpretation of assaysNovel therapeutic strategiesPathological scenariosCell culturesBiomedical researchCellsEukaryotesAssaysTherapeutic strategiesTremendous implicationsOrganismsDeregulationCascadeDozens of methodsDeathDepth investigation
2007
Neuroinflammation in neuronal degeneration and repair
Berliocchi L, Corasaniti M, Bagetta G, Lipton S. Neuroinflammation in neuronal degeneration and repair. Cell Death & Differentiation 2007, 14: 883-884. PMID: 17256010, DOI: 10.1038/sj.cdd.4402097.Peer-Reviewed Original Research
2005
HIV-1 infection and AIDS: consequences for the central nervous system
Kaul M, Zheng J, Okamoto S, Gendelman H, Lipton S. HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death & Differentiation 2005, 12: 878-892. PMID: 15832177, DOI: 10.1038/sj.cdd.4401623.Peer-Reviewed Original ResearchMeSH KeywordsAcquired Immunodeficiency SyndromeAIDS Dementia ComplexAnimalsAntiretroviral Therapy, Highly ActiveApoptosisApoptosis Regulatory ProteinsBrainChemokinesForecastingHIV Envelope Protein gp120HIV-1HumansMembrane GlycoproteinsMicrogliaNerve DegenerationNeuronsReceptors, ChemokineSignal TransductionStem CellsTNF-Related Apoptosis-Inducing LigandTumor Necrosis Factor-alphaConceptsHuman immunodeficiency virus-1Glutamate receptor-mediated excitotoxicityReceptor-mediated excitotoxicityHIV-1 infectionImmune competent cellsExtracellular matrix-degrading enzymesImmunodeficiency virus-1Central nervous systemFuture therapeutic interventionsMatrix-degrading enzymesFrank dementiaInflammatory mediatorsNeuronal damageMotor dysfunctionChemokine receptorsGlial functionDegenerative mechanismsNeurological problemsParticular macrophagesBehavioral abnormalitiesNervous systemTherapeutic interventionsNeuropathological responsesVirus 1Infection
2004
Signaling pathways to neuronal damage and apoptosis in human immunodeficiency virus type 1-associated dementia: Chemokine receptors, excitotoxicity, and beyond
Kaul M, Lipton S. Signaling pathways to neuronal damage and apoptosis in human immunodeficiency virus type 1-associated dementia: Chemokine receptors, excitotoxicity, and beyond. Journal Of NeuroVirology 2004, 10: 97-101. PMID: 14982746, DOI: 10.1080/753312759.Peer-Reviewed Original ResearchConceptsNeuronal damageChemokine receptorsN-methyl-D-aspartate (NMDA) receptor-mediated excitotoxicityHuman immunodeficiency virus-1 (HIV-1) infectionHuman immunodeficiency virus type 1Immunodeficiency virus type 1Applicable therapeutic interventionReceptor-mediated excitotoxicityVirus-1 infectionVirus type 1HIV infectionInflammatory factorsHIV-1Therapeutic interventionsType 1Downstream mechanismsExcitotoxicityDementiaInfectionReceptorsNeuropathologyPathwayDamage
2001
Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades
Digicaylioglu M, Lipton S. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades. Nature 2001, 412: 641-647. PMID: 11493922, DOI: 10.1038/35088074.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell NucleusCells, CulturedDNAErythropoietinGenes, ReporterJanus Kinase 2NeuronsNeuroprotective AgentsNF-kappa BNitric OxideN-MethylaspartateProtein BindingProtein TransportProtein-Tyrosine KinasesProto-Oncogene ProteinsRatsReceptors, ErythropoietinSignal TransductionSuperoxide DismutaseTumor Necrosis Factor-alphaConceptsHypoxia-inducible factor-1EPO receptorForm of JAK2Transcription factor hypoxia-inducible factor-1NF-κB-dependent transcriptionNF-κB functionActivation of JAK2Subsequent nuclear translocationTranscription factor NF-κBNF-κBFactor NF-κBSignaling cascadesNitric oxideKinase 2NF-κB signaling cascadesHypoxic-ischemic preconditioningNuclear translocationNeuroprotective genesFactor 1JAK2Neuroprotective pathwaysNeuronal apoptosisCerebrocortical neuronsEPO effectsDegenerative damagePathways to neuronal injury and apoptosis in HIV-associated dementia
Kaul M, Garden G, Lipton S. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 2001, 410: 988-994. PMID: 11309629, DOI: 10.1038/35073667.Peer-Reviewed Original ResearchConceptsHuman immunodeficiency virus-1Neuronal injuryRelease of macrophageImmunodeficiency virus-1Direct injuryTherapeutic interventionsAlarming occurrenceNeurodegenerative diseasesInjuryVirus 1NeuronsDementiaViral proteinsMacrophagesFree radicalsApoptosisToxinPathwayExcitotoxicityMicrogliaHIVDiseaseBrain
2000
Functional role and therapeutic implications of neuronal caspase-1 and -3 in a mouse model of traumatic spinal cord injury
Li M, Ona V, Chen M, Kaul M, Tenneti L, Zhang X, Stieg P, Lipton S, Friedlander R. Functional role and therapeutic implications of neuronal caspase-1 and -3 in a mouse model of traumatic spinal cord injury. Neuroscience 2000, 99: 333-342. PMID: 10938439, DOI: 10.1016/s0306-4522(00)00173-1.Peer-Reviewed Original ResearchConceptsSpinal cord injuryCord injuryCaspase-1Acute central nervous system insultLesion sizeCentral nervous system insultsTraumatic spinal cord injuryVehicle-treated miceSham-operated miceNervous system insultsCaspase-3Spinal cord samplesNon-neuronal cellsN-benzyloxycarbonyl-ValCaspase-1 activityCaspase-3 expressionCell deathNeurological dysfunctionCord samplesMotor functionTissue injuryMouse modelTherapeutic implicationsTransgenic miceTissue damageRole of p38 Mitogen-Activated Protein Kinase in Axotomy-Induced Apoptosis of Rat Retinal Ganglion Cells
Kikuchi M, Tenneti L, Lipton S. Role of p38 Mitogen-Activated Protein Kinase in Axotomy-Induced Apoptosis of Rat Retinal Ganglion Cells. Journal Of Neuroscience 2000, 20: 5037-5044. PMID: 10864961, PMCID: PMC6772303, DOI: 10.1523/jneurosci.20-13-05037.2000.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisAxonal TransportAxotomyCell NucleusCell SurvivalDizocilpine MaleateEnzyme InhibitorsFluorescent DyesImidazolesKineticsMaleMitogen-Activated Protein KinasesNeuroprotective AgentsOptic NerveP38 Mitogen-Activated Protein KinasesPhosphorylationPyridinesRatsRats, Long-EvansRetinal Ganglion CellsSignal TransductionStilbamidinesTime FactorsConceptsRetinal ganglion cellsProtein kinaseP38 Mitogen-Activated Protein KinaseMitogen-Activated Protein KinaseMAP kinase activationIntracellular signal transductionRole of p38P38 MAP kinase activationApoptotic cell deathDose-dependent mannerP38 MAP kinase inhibitorMAP kinase inhibitorRGC apoptosisOptic nerveGanglion cellsSignal transductionNMDA receptorsAxotomy-induced apoptosisApoptotic signalingKinase activationP38 inhibitorRat retinal ganglion cellsCell deathCell typesOptic nerve traumaAntiapoptotic role of the p38 mitogen-activated protein kinase–myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation
Okamoto S, Krainc D, Sherman K, Lipton S. Antiapoptotic role of the p38 mitogen-activated protein kinase–myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 7561-7566. PMID: 10852968, PMCID: PMC16585, DOI: 10.1073/pnas.130502697.Peer-Reviewed Original ResearchConceptsMyocyte enhancer factor 2Mitogen-activated protein kinase p38alphaNeuronal differentiationDominant-negative p38alphaProtein kinase p38alphaDominant-negative formTranscription factor pathwaysMADS familyMEF2 familyMEF2 pathwayCell divisionTranscription factorsMyogenic phenotypeExpression patternsMyogenic factorsAntiapoptotic roleCell deathMammalian cerebral cortexP38alphaApoptotic deathNegative formPrecursor cellsFactor 2Factor pathwayApoptosisMitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons
Budd S, Tenneti L, Lishnak T, Lipton S. Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 6161-6166. PMID: 10811898, PMCID: PMC18575, DOI: 10.1073/pnas.100121097.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsApoptosisBongkrekic AcidCaspase 3Caspase 8Caspase 9CaspasesCerebral CortexCytochrome c GroupEnzyme ActivationEnzyme InhibitorsIntracellular MembranesMitochondriaMitochondrial ADP, ATP TranslocasesNerve Tissue ProteinsNeuronsPermeabilityProtein Kinase InhibitorsReceptors, N-Methyl-D-AspartateStaurosporineConceptsAdenine nucleotide translocatorBongkrekic acidCaspase-3 activationMitochondrial adenine nucleotide translocatorCyt cReceptor-mediated apoptosisApoptotic signaling pathwaysMitochondrial permeability transition poreMitochondrial membrane potentialPermeability transition poreStaurosporine-induced activationCellular ATP contentStaurosporine resultsPutative componentsCerebrocortical neuronsNucleotide translocatorCaspase activityCaspase-8Signaling pathwaysTransition poreMitochondrial dysfunctionCytochrome cDistinct pathwaysCultured cerebrocortical neuronsApoptosisInvolvement of Activated Caspase‐3‐Like Proteases in N‐Methyl‐D‐Aspartate‐Induced Apoptosis in Cerebrocortical Neurons
Tenneti L, Lipton S. Involvement of Activated Caspase‐3‐Like Proteases in N‐Methyl‐D‐Aspartate‐Induced Apoptosis in Cerebrocortical Neurons. Journal Of Neurochemistry 2000, 74: 134-142. PMID: 10617114, DOI: 10.1046/j.1471-4159.2000.0740134.x.Peer-Reviewed Original ResearchConceptsCerebrocortical neuronsNeuronal deathNeuronal apoptosisIncubation of neuronsNMDA receptor activationCaspase-3Time-dependent increaseCentral neuronsNMDA stimulationExcessive activationGlutamate receptorsMild insultReceptor activationCaspase-3-like proteasesDouble labelingNeurodegenerative diseasesNMDANeuronsApoptotic cellsConcordant resultsApoptosisPossible activationActivation of caspasesInsultAffinity labeling technique
1999
Signaling Events in NMDA Receptor‐Induced Apoptosis in Cerebrocortical Cultures
BUDD S, LIPTON S. Signaling Events in NMDA Receptor‐Induced Apoptosis in Cerebrocortical Cultures. Annals Of The New York Academy Of Sciences 1999, 893: 261-264. PMID: 10672244, DOI: 10.1111/j.1749-6632.1999.tb07832.x.Peer-Reviewed Original ResearchChemokines and activated macrophages in HIV gp120-induced neuronal apoptosis
Kaul M, Lipton S. Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 8212-8216. PMID: 10393974, PMCID: PMC22214, DOI: 10.1073/pnas.96.14.8212.Peer-Reviewed Original ResearchMeSH KeywordsAIDS Dementia ComplexAnimalsApoptosisCells, CulturedCerebral CortexChemokine CCL4Chemokine CCL5Chemokine CXCL12ChemokinesCytokinesEmbryo, MammalianHIV Envelope Protein gp120HIV-1HumansImmunoglobulin FragmentsMacrophage ActivationMacrophage Inflammatory ProteinsMacrophagesNeurogliaNeuronsOligopeptidesRatsRats, Sprague-DawleyRecombinant ProteinsT-LymphocytesConceptsMacrophages/microgliaNeuronal apoptosisChemokine receptorsSDF-1Brain macrophages/microgliaStromal cell-derived factorRat cerebrocortical culturesBeta-chemokines RANTESCell-derived factorNeurotoxic factorsP38 mitogen-activated protein kinase (MAPK) pathwayProportion of cellsInflammatory proteinP38 mitogen-activated protein kinaseGp120SF2Cerebrocortical culturesReceptor CXCR4MicrogliaHuman neuronsHIV gp120CXCR4 receptorMitogen-activated protein kinase pathwayMitogen-activated protein kinaseNeuronsGp120Excitotoxins in Neuronal Apoptosis and Necrosis
Nicotera P, Lipton S. Excitotoxins in Neuronal Apoptosis and Necrosis. Cerebrovascular And Brain Metabolism Reviews 1999, 19: 583-591. PMID: 10366188, DOI: 10.1097/00004647-199906000-00001.Peer-Reviewed Original ResearchConceptsCommon histopathologic featuresLocal inflammatory reactionProgression of diseaseCell deathNeuronal injuryNeuronal lossHistopathologic featuresNeuronal demiseNeuropathologic conditionsInflammatory reactionNeurotoxic injuryNeuronal apoptosisPathologic conditionsNecrosisCell destructionPrevention of apoptosisNuclear pyknosisNeurodegenerative diseasesType of deathInjuryCell swellingGeneralized disruptionDeathApoptosisPrevalenceShakespeare in love—with NMDA receptors?
Lipton S, Nakanishi N. Shakespeare in love—with NMDA receptors? Nature Medicine 1999, 5: 270-271. PMID: 10086378, DOI: 10.1038/6481.Peer-Reviewed Original Research
1998
Role of Caspases in N‐Methyl‐d‐Aspartate‐Induced Apoptosis in Cerebrocortical Neurons
Tenneti L, D'Emilia D, Troy C, Lipton S. Role of Caspases in N‐Methyl‐d‐Aspartate‐Induced Apoptosis in Cerebrocortical Neurons. Journal Of Neurochemistry 1998, 71: 946-959. PMID: 9721720, DOI: 10.1046/j.1471-4159.1998.71030946.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid Chloromethyl KetonesAnimalsApoptosisCalciumCaspase 1Cells, CulturedCerebral CortexCysteine EndopeptidasesCysteine Proteinase InhibitorsIntracellular MembranesLipid PeroxidesMembrane PotentialsMitochondriaNeuronsN-MethylaspartateRatsRats, Sprague-DawleyReactive Oxygen SpeciesSignal TransductionConceptsInterleukin-1beta-converting enzymeMitochondrial membrane potentialReactive oxygen speciesRole of caspasesZ-VAD-FMKROS formationMembrane potentialReceptor activationCaspase activationDownstream eventsPseudosubstrate peptideNeuronal apoptosisMitochondrial depolarizationCysteine proteasesLipid peroxidationCaspasesCerebrocortical neuronsSubstrate cleavageIntracellular processesForm of deathN-methyl-D-aspartate (NMDA) receptor activationCortical neuronal apoptosisApoptosisCatalytic siteNMDA receptor activationCalcium, free radicals and excitotoxins in neuronal apoptosis
Lipton S, Nicotera P. Calcium, free radicals and excitotoxins in neuronal apoptosis. Cell Calcium 1998, 23: 165-171. PMID: 9601612, DOI: 10.1016/s0143-4160(98)90115-4.Peer-Reviewed Original Research