2024
Identifying the minimal sets of distance restraints for FRET‐assisted protein structural modeling
Liu Z, Grigas A, Sumner J, Knab E, Davis C, O'Hern C. Identifying the minimal sets of distance restraints for FRET‐assisted protein structural modeling. Protein Science 2024, 33: e5219. PMID: 39548730, PMCID: PMC11568256, DOI: 10.1002/pro.5219.Peer-Reviewed Original ResearchConceptsForster resonance energy transferProtein structure determination techniquesCellular environmentProtein structure modelingAmino acid pairsConformational changesProteins in vivoForster resonance energy transfer studiesCrowded cellular environmentStructure determination techniquesDynamics in vivoStructures in vivoInduce conformational changesProtein structureResonance energy transferRoot-mean-square deviationAcid pairsInter-residue restraintsStructural ensemblesAmino acidsNon-physiological environmentsProteinDistance restraintsNucleic acidsAminoIdentifying the minimal sets of distance restraints for FRET‐assisted protein structural modeling
Liu Z, Grigas A, Sumner J, Knab E, Davis C, O'Hern C. Identifying the minimal sets of distance restraints for FRET‐assisted protein structural modeling. Protein Science 2024, 33 PMID: 38800659, PMCID: PMC11118665, DOI: 10.1002/pro.5219.Peer-Reviewed Original ResearchForster resonance energy transferProtein structure determination techniquesCellular environmentProtein structure modelingAmino acid pairsConformational changesForster resonance energy transfer studiesCrowded cellular environmentStructure determination techniquesInduce conformational changesProtein structureResonance energy transferRoot-mean-square deviationAcid pairsInter-residue restraintsStructural ensemblesAmino acidsNon-physiological environmentsProteinDistance restraintsNucleic acidsAminoMD simulationsFRET pairsOrganellesConnecting polymer collapse and the onset of jamming
Grigas A, Fisher A, Shattuck M, O'Hern C. Connecting polymer collapse and the onset of jamming. Physical Review E 2024, 109: 034406. PMID: 38632799, DOI: 10.1103/physreve.109.034406.Peer-Reviewed Original ResearchStatic packingsMechanical propertiesPolymer packingPacking fractionBead-spring polymersInterior of proteinsInterparticle contactsHigh packing fractionsPolymerAmino acidsDegrees of freedomRepulsive disksQuartic modesPolymer collapseQuartic scalingRepulsive particlesInterparticlePeptide bondPropertiesReference systemPackingParticlesPotential energyExcessive contactMode
2020
Analyses of protein cores reveal fundamental differences between solution and crystal structures
Mei Z, Treado JD, Grigas AT, Levine ZA, Regan L, O'Hern CS. Analyses of protein cores reveal fundamental differences between solution and crystal structures. Proteins Structure Function And Bioinformatics 2020, 88: 1154-1161. PMID: 32105366, PMCID: PMC7415476, DOI: 10.1002/prot.25884.Peer-Reviewed Original ResearchConceptsProtein structureX-ray crystallographyProtein coreHigh-quality protein structuresCore amino acidsSide-chain dihedral anglesNMR structureCore residuesAmino acidsCrystal structureStructural differencesCrystallographyNMR spectroscopyResiduesSquare deviationPacking-generation protocolsFundamental differencesPhysical basisContrast
2016
Understanding the physical basis for the side‐chain conformational preferences of methionine
Virrueta A, O'Hern CS, Regan L. Understanding the physical basis for the side‐chain conformational preferences of methionine. Proteins Structure Function And Bioinformatics 2016, 84: 900-911. PMID: 26917446, DOI: 10.1002/prot.25026.Peer-Reviewed Original ResearchConceptsSide-chain dihedral angle distributionsAmino acidsHigh-resolution protein crystal structuresProtein-protein interfacesMet side chainsStructure of MetProtein crystal structuresVersatile amino acidDihedral angle distributionsProtein structureProtein coreIleSide chainsLeuValPheAcidThrObserved distributionCrystal structureMetSMethionineSerTyrSelenomethionine
2014
Predicting the side‐chain dihedral angle distributions of nonpolar, aromatic, and polar amino acids using hard sphere models
Zhou AQ, O'Hern CS, Regan L. Predicting the side‐chain dihedral angle distributions of nonpolar, aromatic, and polar amino acids using hard sphere models. Proteins Structure Function And Bioinformatics 2014, 82: 2574-2584. PMID: 24912976, DOI: 10.1002/prot.24621.Peer-Reviewed Original Research