2002
Control Analysis for Autonomously Oscillating Biochemical Networks
Reijenga K, Westerhoff H, Kholodenko B, Snoep J. Control Analysis for Autonomously Oscillating Biochemical Networks. Biophysical Journal 2002, 82: 99-108. PMID: 11751299, PMCID: PMC1302452, DOI: 10.1016/s0006-3495(02)75377-0.Peer-Reviewed Original ResearchMeSH KeywordsBiochemistryGlycolysisKineticsModels, BiologicalNerve NetOscillometrySaccharomyces cerevisiaeConceptsSummation theoremYeast glycolytic oscillationsLimit cycle oscillationsDynamic systemsControl coefficientsBiochemical networksCycle oscillationsOscillatory propertiesControl analysisMetabolic control analysisTheoremGlycolytic oscillationsTime domainOscillationsModel outputDiscrete Fourier transformFrequency domainSteady stateData setsQualitative way
1999
Live control of the living cell
van Heeswijk W, Bakker B, Teusink B, Kholodenko B, Somsen O, Snoep J, Westerhoff H. Live control of the living cell. Biochemical Society Transactions 1999, 27: 261-264. PMID: 10093744, DOI: 10.1042/bst0270261.Peer-Reviewed Original Research
1996
Control analysis of glycolytic oscillations
Bier M, Teusink B, Kholodenko B, Westerhoff H. Control analysis of glycolytic oscillations. Biophysical Chemistry 1996, 62: 15-24. PMID: 8962468, DOI: 10.1016/s0301-4622(96)02195-3.Peer-Reviewed Original Research
1981
The Regulation of Glycolysis in Human Erythrocytes
ATAULLAKHANOV F, VITVITSKY V, ZHABOTINSKY A, PICHUGIN A, PLATONOVA O, KHOLODENKO B, EHRLICH L. The Regulation of Glycolysis in Human Erythrocytes. The FEBS Journal 1981, 115: 359-365. PMID: 7238510, DOI: 10.1111/j.1432-1033.1981.tb05246.x.Peer-Reviewed Original ResearchRegulation of erythrocyte energy metabolism. Dependence of glycolysis characteristics on donor individual parameters.
Kholodenko B, Dibrov B, Zhabotinskiĭ A. Regulation of erythrocyte energy metabolism. Dependence of glycolysis characteristics on donor individual parameters. Биофизика 1981, 26: 501-6. PMID: 6455164.Peer-Reviewed Original ResearchRegulation of glycolysis in human erythrocytes. The mechanism of ATP concentration stabilization.
Ataullakhanov F, Vitvitsky V, Zhabotinsky A, Pichugin A, Kholodenko B, Ehrlich L. Regulation of glycolysis in human erythrocytes. The mechanism of ATP concentration stabilization. Acta Biologica Et Medica Germanica 1981, 40: 991-7. PMID: 7331640.Peer-Reviewed Original Research
1979
Quantitative model of human erythrocyte glycolysis. Region of cell viability determined by ATP concentration.
Ataullakhanov F, Vitvitskiĭ V, Zhabotinskiĭ A, Pichugin A, Kholodenko B. Quantitative model of human erythrocyte glycolysis. Region of cell viability determined by ATP concentration. Биофизика 1979, 24: 1048-53. PMID: 159725.Peer-Reviewed Original ResearchQuantitative model of human erythrocyte glycolysis. Relationship between erythrocyte energy metabolism and Na+, K+-ATPase activity.
Ataullakhanov F, Vitvitskiĭ V, Zhabotinskiĭ A, Kholodenko B, Erlikh L. Quantitative model of human erythrocyte glycolysis. Relationship between erythrocyte energy metabolism and Na+, K+-ATPase activity. Биофизика 1979, 24: 489-94. PMID: 223657.Peer-Reviewed Original ResearchMeSH KeywordsErythrocytesGlycolysisHumansPotassiumSodium-Potassium-Exchanging ATPaseStrophanthinsValinomycin
1977
Quantitative model of human erythrocyte glycolysis. I. Relationship between the stationary rate of glycolysis and the ATP concentration.
Ataullakhanov F, Vitvitskiĭ V, Zhabotinskiĭ A, Kholodenko B, Erlikh L. Quantitative model of human erythrocyte glycolysis. I. Relationship between the stationary rate of glycolysis and the ATP concentration. Биофизика 1977, 22: 483-8. PMID: 142521.Peer-Reviewed Original Research