Skip to Main Content

INFORMATION FOR

    C. Shan Xu, PhD

    Harvey and Kate Cushing Professor of Cellular & Molecular Physiology
    DownloadHi-Res Photo

    Contact Info

    Cellular & Molecular Physiology

    PO Box 208026, 333 Cedar Street

    New Haven, CT 06520-8026

    United States

    About

    Titles

    Harvey and Kate Cushing Professor of Cellular & Molecular Physiology

    Biography

    C. Shan Xu graduated from the University of Science and Technology of China and obtained his Ph.D. in physical chemistry from the University of California, Berkeley in 1997. Xu went on to serve as a technical director at Lam Research Corporation, where he oversaw research, development, and dissemination of cutting-edge semiconductor technologies. In 2009, he joined the Janelia Research Campus of Howard Hughes Medical Institute to develop enhanced focused ion beam-scanning electron microscopy (eFIB-SEM). In 2022, Xu joined Yale School of Medicine as a Harvey and Kate Cushing Professor in the Department of Cellular and Molecular Physiology.

    In addition to his contributions to technology development, highlighted by more than twenty patents, Xu is known for his innovation and leadership in transforming conventional FIB-SEM from a lab tool that is unreliable for more than a few days to a robust imaging platform with 100% effective reliability: capable of years of continuous imaging without defects in the final image stack. The enhanced FIB-SEM technology has enabled significant discoveries in tissue biology, cell biology, and neuroscience where nano-scale resolution coupled with meso and even macro scale volumes is critical. It enabled the largest and most detailed Drosophila brain connectome in 2020, and created the first open-access, 3D atlas of whole cells and tissues at the finest isotropic resolution of 4-nm voxels in 2021.

    Xu lab focuses on pushing the boundaries of volume electron microscopy. A primary goal is to break through the existing SEM resolution limit, a critical milestone that will connect two seemingly disparate fields: structural biology and cell biology. This pioneering effort aims to enable researchers to explore and understand architectural intricacies across multiple scales, from the molecular level, through organelles, up to entire cells, all within their native tissue environments.

    Appointments

    • Cellular & Molecular Physiology

      Professor
      Primary

    Other Departments & Organizations

    Education & Training

    PhD
    University of California at Berkeley, Chemistry (1997)
    BS
    University of Science and Technology of China, Physical Chemistry (1992)

    Research

    Overview

    Google Scholar: Profile

    Conventional FIB-SEM

    Focused ion beam scanning electron microscopy (FIB-SEM) has been used in materials science and the semiconductor industry for decades, with applications in biological imaging emerging since 2006. The conventional systems, however, offer slower imaging speeds and lack of long-term system stability, limiting their acquisition volume to less than 103 µm3.

    Enhanced FIB-SEM (eFIB-SEM)

    We redesigned the system architecture and transformed FIB-SEM from a conventional system lacking long term reliability to a robust imaging platform with 100% effective reliability. This enhanced FIB-SEM (eFIB-SEM) technology expands the maximum imageable volume by more than five orders of magnitude and achieves the finest isotropic voxel resolution at 4 nm (Xu et al., eLife 2017; US patent 10,600,615; Xu et al., Nature 2021). By combining with super-resolution fluorescence imaging, the CLEM applications unleash the full potential of intracellular organelle identification with labeling insights.

    Using the eFIB-SEM platform, we generated the largest and most detailed connectome in 2020, highlighted in Nature & The New York Times. Additionally, we established the first open access, 3D reference library of whole cells and tissues at the finest isotropic resolution, featured in Nature & TheScientist.

    By coupling nanoscale isotropic resolution with meso- and macro-scale volumes, the enhanced FIB-SEM pipeline (Pang & Xu, 2023) ushers in a new era of high-resolution large volume electron microscopy to reveal the structure-function relationships in biology. This is demonstrated by over 40 publications since the technology's debut ( Xu et al., 2017), including Nature (Xu et al., 2021; Heinrich et al., 2021; Parlakgül et al., 2022; Obara et al., 2024), Science (Nixon-Abell et al., 2016; Gao et al., 2019; Hoffman et al., 2020; Ritter et al., 2022), and Cell (Ioannou et al., 2019; Weigel et al., 2021; Sheu et al., 2022), and Neuron (Handler et al., 2023), etc., contributing more than 5,000 citations over the past five years.

    Beyond enhanced FIB-SEM

    Despite how much the enhanced FIB-SEM technology has contributed, the 4-nm isotropic resolution falls short of robust visualization of 3D ultrastructure of sub-10 nm features. My lab aims to transcend the SEM resolution limit that has persisted for 80 years. Such a technology does not currently exist. With success, it will bridge the fields that are currently not connected: structural biology and cell biology, in the context of probing architecture across scales from protein to organelle to cell, within its native tissue environments.

    In addition, we contemplate a 3D cryo-FIB-SEM technology that can reliably image a block of vitreously frozen cells or tissues with good contrast and without the need of heavy metal staining, dehydration, and plastic embedding. This streamlined approach will offer the potential to bypass tedious EM sample preparation needed to be individually optimized for large variety of tissues from different species. Most importantly, it allows the volume EM to unveil the fine details of cells and tissues in their native states.

    Medical Research Interests

    Biophysics; Engineering; Imaging, Three-Dimensional; Microscopy, Electron; Neurosciences; Physiology

    Research at a Glance

    Publications Timeline

    A big-picture view of C. Shan Xu's research output by year.
    49Publications
    5,865Citations

    Publications

    Featured Publications

    Get In Touch

    Contacts

    Academic Office Number
    Mailing Address

    Cellular & Molecular Physiology

    PO Box 208026, 333 Cedar Street

    New Haven, CT 06520-8026

    United States

    Locations

    • Sterling Hall of Medicine, B-Wing

      Academic Office

      333 Cedar Street, Ste BE36A

      New Haven, CT 06510