Miyu Moriyama
Associate Research ScientistAbout
Research
Publications
2024
SARS-CoV-2-related bat viruses evade human intrinsic immunity but lack efficient transmission capacity
Peña-Hernández M, Alfajaro M, Filler R, Moriyama M, Keeler E, Ranglin Z, Kong Y, Mao T, Menasche B, Mankowski M, Zhao Z, Vogels C, Hahn A, Kalinich C, Zhang S, Huston N, Wan H, Araujo-Tavares R, Lindenbach B, Homer R, Pyle A, Martinez D, Grubaugh N, Israelow B, Iwasaki A, Wilen C. SARS-CoV-2-related bat viruses evade human intrinsic immunity but lack efficient transmission capacity. Nature Microbiology 2024, 9: 2038-2050. PMID: 39075235, DOI: 10.1038/s41564-024-01765-z.Peer-Reviewed Original ResearchBat coronavirusesRelatives of SARS-CoV-2Upper airwayUpper airways of miceEpithelial cellsHuman nasal epithelial cellsAirways of miceMajor histocompatibility complex class I.SARS-CoV-2Nasal epithelial cellsHistocompatibility complex class I.Human bronchial epithelial cellsGenetic similarityBronchial epithelial cellsInnate immune restrictionCoronavirus replicationFunctional characterizationMolecular cloningReduced pathogenesisImpaired replicationBat virusCoronavirus pathogenesisPandemic potentialHigh-risk familiesImmune restriction
2023
High body temperature increases gut microbiota-dependent host resistance to influenza A virus and SARS-CoV-2 infection
Nagai M, Moriyama M, Ishii C, Mori H, Watanabe H, Nakahara T, Yamada T, Ishikawa D, Ishikawa T, Hirayama A, Kimura I, Nagahara A, Naito T, Fukuda S, Ichinohe T. High body temperature increases gut microbiota-dependent host resistance to influenza A virus and SARS-CoV-2 infection. Nature Communications 2023, 14: 3863. PMID: 37391427, PMCID: PMC10313692, DOI: 10.1038/s41467-023-39569-0.Peer-Reviewed Original ResearchConceptsTakeda G protein-coupled receptor 5Gut microbiota-dependent mannerSARS-CoV-2 infectionMicrobiota-dependent mannerIncrease host resistanceLethal SARS-CoV-2 infectionDeoxycholic acidSevere acute respiratory syndrome coronavirus 2Neutrophil-dependent tissue damageAcute respiratory syndrome coronavirus 2Influenza virusRespiratory syndrome coronavirus 2G protein-coupled receptor 5Farnesoid X receptor agonistCOVID-19 patientsExposure of miceInfluenza virus infectionSyndrome coronavirus 2Coronavirus disease 2019Host resistanceX receptor agonistCertain bile acidsBasal body temperatureSARS-CoV-2Body temperatureEnhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants
Moriyama M, Lucas C, Monteiro V, Initiative Y, Iwasaki A, Chen N, Breban M, Hahn A, Pham K, Koch T, Chaguza C, Tikhonova I, Castaldi C, Mane S, De Kumar B, Ferguson D, Kerantzas N, Peaper D, Landry M, Schulz W, Vogels C, Grubaugh N. Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2221652120. PMID: 37036977, PMCID: PMC10120007, DOI: 10.1073/pnas.2221652120.Peer-Reviewed Original ResearchConceptsMHC-I expressionBreakthrough infectionsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantsMajor histocompatibility complex class I expressionCell-mediated immunityInfluenza virus infectionSARS-CoV-2 VOCsMHC-I upregulationClass I expressionSARS-CoV-2T cell recognitionVirus infectionMHC II expressionSpike proteinEnhanced inhibitionInfectionCell recognitionCommon mutationsReinfectionE proteinAntibodiesViral genesSubvariantsExpression
2021
Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA
Oh JE, Song E, Moriyama M, Wong P, Zhang S, Jiang R, Strohmeier S, Kleinstein SH, Krammer F, Iwasaki A. Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA. Science Immunology 2021, 6: eabj5129. PMID: 34890255, PMCID: PMC8762609, DOI: 10.1126/sciimmunol.abj5129.Peer-Reviewed Original ResearchConceptsVirus infectionIgA secretionB cellsMucosal surfacesIgA-secreting B cellsIgA-expressing cellsRole of IgARespiratory virus infectionsIgA-secreting cellsLower respiratory tractInfluenza virus infectionEffective immune protectionHeterologous virus infectionMemory B cellsSecretory immunoglobulin AProtein-based vaccinesB cell populationsPredominant Ig isotypeSite of entryIntranasal primingBronchoalveolar spaceProtective immunityVaccine strategiesRespiratory mucosaImmune protectionOral Bacteria Combined with an Intranasal Vaccine Protect from Influenza A Virus and SARS-CoV-2 Infection
Nagai M, Moriyama M, Ichinohe T. Oral Bacteria Combined with an Intranasal Vaccine Protect from Influenza A Virus and SARS-CoV-2 Infection. MBio 2021, 12: 10.1128/mbio.01598-21. PMID: 34399617, PMCID: PMC8406166, DOI: 10.1128/mbio.01598-21.Peer-Reviewed Original ResearchMeSH KeywordsAdaptive ImmunityAdjuvants, ImmunologicAdministration, IntranasalAnimalsAntibodies, ViralBacteriaCell LineChlorocebus aethiopsCOVID-19COVID-19 VaccinesDogsHemagglutinin Glycoproteins, Influenza VirusImmunity, MucosalInfluenza A Virus, H1N1 SubtypeInfluenza VaccinesMadin Darby Canine Kidney CellsMiceMice, Inbred BALB CMyeloid Differentiation Factor 88Nasal MucosaOrthomyxoviridae InfectionsPathogen-Associated Molecular Pattern MoleculesSARS-CoV-2VaccinationVero CellsConceptsInfluenza virus infectionVirus-specific adaptive immunityVaccine-specific antibody responseVirus-specific antibody responsesAntibody responseMyD88-dependent mannerVirus infectionHealthy human volunteersPathogen-associated molecular patternsImmune responseNasal bacteriaOral bacteriaCommensal bacteriaIntranasal supplementationHA vaccineVaccine protectsIntranasal vaccineIntranasal administrationIntranasal applicationAdaptive immunityOral cavityAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionSevere acute respiratory syndrome coronavirus 2Influenza virus hemagglutinin vaccine
2020
Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2
Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, Warren JL, Geng B, Muenker MC, Moore AJ, Vogels CBF, Petrone ME, Ott IM, Lu P, Venkataraman A, Lu-Culligan A, Klein J, Earnest R, Simonov M, Datta R, Handoko R, Naushad N, Sewanan LR, Valdez J, White EB, Lapidus S, Kalinich CC, Jiang X, Kim DJ, Kudo E, Linehan M, Mao T, Moriyama M, Oh JE, Park A, Silva J, Song E, Takahashi T, Taura M, Weizman OE, Wong P, Yang Y, Bermejo S, Odio CD, Omer SB, Dela Cruz CS, Farhadian S, Martinello RA, Iwasaki A, Grubaugh ND, Ko AI. Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2. New England Journal Of Medicine 2020, 383: 1283-1286. PMID: 32857487, PMCID: PMC7484747, DOI: 10.1056/nejmc2016359.Peer-Reviewed Original ResearchInflammasomes and Pyroptosis as Therapeutic Targets for COVID-19
Yap JKY, Moriyama M, Iwasaki A. Inflammasomes and Pyroptosis as Therapeutic Targets for COVID-19. The Journal Of Immunology 2020, 205: ji2000513. PMID: 32493814, PMCID: PMC7343621, DOI: 10.4049/jimmunol.2000513.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAnimalsAntiviral AgentsBetacoronavirusCoronavirus InfectionsCOVID-19COVID-19 Drug TreatmentHumansImmunity, InnateInflammasomesIntercellular Signaling Peptides and ProteinsMacrophages, AlveolarPandemicsPneumonia, ViralPyroptosisSARS-CoV-2Severe acute respiratory syndrome-related coronavirusSignal TransductionConceptsSevere acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infectionSevere acute respiratory syndrome-related coronavirus 2Coronavirus disease 2019 (COVID-19) patientsSevere coronavirus disease 2019Coronavirus 2 infectionAvailable pharmaceutical agentsCoronavirus disease 2019Innate immune pathwaysClinical outcomesCoronavirus 2Inflammatory responseCellular pyroptosisDisease 2019Downstream cytokinesInflammasome activationInflammasome pathwayTherapeutic targetImmune pathwaysPromising targetPharmaceutical agentsCOVID-19PyroptosisPatientsCytokinesInflammasomeAnalytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets
Vogels CBF, Brito AF, Wyllie AL, Fauver JR, Ott IM, Kalinich CC, Petrone ME, Casanovas-Massana A, Catherine Muenker M, Moore AJ, Klein J, Lu P, Lu-Culligan A, Jiang X, Kim DJ, Kudo E, Mao T, Moriyama M, Oh JE, Park A, Silva J, Song E, Takahashi T, Taura M, Tokuyama M, Venkataraman A, Weizman OE, Wong P, Yang Y, Cheemarla NR, White EB, Lapidus S, Earnest R, Geng B, Vijayakumar P, Odio C, Fournier J, Bermejo S, Farhadian S, Dela Cruz CS, Iwasaki A, Ko AI, Landry ML, Foxman EF, Grubaugh ND. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nature Microbiology 2020, 5: 1299-1305. PMID: 32651556, PMCID: PMC9241364, DOI: 10.1038/s41564-020-0761-6.Peer-Reviewed Original ResearchConceptsSARS-CoV-2SARS-CoV-2 RTSevere acute respiratory syndrome coronavirusAcute respiratory syndrome coronavirusViral RNA copiesPublic health laboratoriesPublic health interventionsReverse transcription-PCR assaySARS-CoV-2 diagnostic testingDiagnostic assaysTranscription-PCR assaySARS-CoV-2 evolutionQuantitative reverse transcription-PCR assaysRapid diagnostic assaysHealth laboratoriesHealth interventionsDiagnostic testingRNA copiesPrimer-probe setsAssaysLow sensitivityCritical needAnalytical sensitivityInfluenza Virus-Induced Oxidized DNA Activates Inflammasomes
Moriyama M, Nagai M, Maruzuru Y, Koshiba T, Kawaguchi Y, Ichinohe T. Influenza Virus-Induced Oxidized DNA Activates Inflammasomes. IScience 2020, 23: 101270. PMID: 32592999, PMCID: PMC7293844, DOI: 10.1016/j.isci.2020.101270.Peer-Reviewed Original ResearchPB1-F2 proteinOxidized DNAViral proteinsMitochondrial reactive oxygen species productionDNA releaseInfluenza virus M2IL-1β secretionMitochondrial ROS productionIon channel activityReactive oxygen species productionMitochondrial localizationIntracellular ionic balanceAntioxidant Mito-TEMPOOxygen species productionNLRP3 inflammasome activationVirus M2Inflammasome activationM2 proteinReceptor familyNOD-like receptor familyProteinInfluenza viral proteinsMito-TEMPOChannel activityROS productionSeasonality of Respiratory Viral Infections
Moriyama M, Hugentobler WJ, Iwasaki A. Seasonality of Respiratory Viral Infections. Annual Review Of Virology 2020, 7: 1-19. PMID: 32196426, DOI: 10.1146/annurev-virology-012420-022445.Peer-Reviewed Original ResearchMeSH KeywordsBetacoronavirusCoronavirus InfectionsCOVID-19HumansHumidityInfectious Disease Incubation PeriodInfluenza, HumanOrthomyxoviridaePandemicsPicornaviridae InfectionsPneumonia, ViralRespiratory Tract InfectionsRhinovirusSARS-CoV-2SeasonsSevere Acute Respiratory SyndromeSevere acute respiratory syndrome-related coronavirusSeverity of Illness IndexTemperatureConceptsRespiratory viral infectionsViral infectionSevere acute respiratory syndrome coronavirusAcute respiratory syndrome coronavirusViral respiratory infectionsAdaptive immune responsesRespiratory viral diseasesRespiratory infectionsRespiratory virusesInfluenza diseaseRespiratory tractImmune responseAnnual epidemicsHost responseInfectionMajor contributing factorViral diseasesDiseaseContributing factorVirus stabilityVirusEpidemicRecent studiesYearsHuman population