Arnaud Augert
Assistant ProfessorCards
About
Research
Publications
2025
MAX inactivation deregulates the MYC network and induces neuroendocrine neoplasia in multiple tissues
Freie B, Ibrahim A, Carroll P, Bronson R, Augert A, MacPherson D, Eisenman R. MAX inactivation deregulates the MYC network and induces neuroendocrine neoplasia in multiple tissues. Science Advances 2025, 11: eadt3177. PMID: 40279415, PMCID: PMC12024646, DOI: 10.1126/sciadv.adt3177.Peer-Reviewed Original Research
2021
Protein neddylation as a therapeutic target in pulmonary and extrapulmonary small cell carcinomas
Norton J, Augert A, Eastwood E, Basom R, Rudin C, MacPherson D. Protein neddylation as a therapeutic target in pulmonary and extrapulmonary small cell carcinomas. Genes & Development 2021, 35: 870-887. PMID: 34016692, PMCID: PMC8168556, DOI: 10.1101/gad.348316.121.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBasic Helix-Loop-Helix Transcription FactorsCarcinoma, Small CellCell DeathCell Line, TumorCOP9 Signalosome ComplexCyclopentanesDisease Models, AnimalGene Expression Regulation, NeoplasticHeterograftsHumansLung NeoplasmsMiceNEDD8 ProteinNeuroendocrine CellsProteinsPyrimidinesRepressor ProteinsSequence DeletionConceptsSmall cell lung carcinomaSmall cell carcinomaExtrapulmonary small cell carcinomaNeddylation inhibitionCell carcinomaCell statesGenome-scale CRISPR/Therapeutic targetPatient-derived xenograft modelsCell linesDeletion of componentsSolid tumor malignanciesCell lung carcinomaNovel therapeutic approachesPotential therapeutic targetSuppressor screenSCLC cell linesCOP9 signalosomeProtein neddylationCRISPR/Genetic suppressionPathway genesPDX modelsMajor regulatorLung carcinoma
2020
MAX Functions as a Tumor Suppressor and Rewires Metabolism in Small Cell Lung Cancer
Augert A, Mathsyaraja H, Ibrahim A, Freie B, Geuenich M, Cheng P, Alibeckoff S, Wu N, Hiatt J, Basom R, Gazdar A, Sullivan L, Eisenman R, MacPherson D. MAX Functions as a Tumor Suppressor and Rewires Metabolism in Small Cell Lung Cancer. Cancer Cell 2020, 38: 97-114.e7. PMID: 32470392, PMCID: PMC7363581, DOI: 10.1016/j.ccell.2020.04.016.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBasic Helix-Loop-Helix Leucine Zipper Transcription FactorsCells, CulturedDisease Models, AnimalGene Expression ProfilingGene Expression Regulation, NeoplasticHEK293 CellsHep G2 CellsHumansK562 CellsKaplan-Meier EstimateLung NeoplasmsMice, KnockoutMice, TransgenicSmall Cell Lung CarcinomaTumor Suppressor ProteinsConceptsTumor suppressorSmall cell lung cancerMyc family proteinsSmall cell lung cancer progressionCellular modelObligate heterodimeric partnerOne-carbon metabolismFamily proteinsRewired metabolismSerine biosynthesisCell lung cancerMetabolic genesMetabolic rewiringHuman small cell lung cancerHeterodimeric partnerTop hitsTumor suppressionDeletionLung cancerEarly-stage small cell lung cancerSerineSuppressorRewiringMouse modelMetabolism
2019
Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition
Augert A, Eastwood E, Ibrahim A, Wu N, Grunblatt E, Basom R, Liggitt D, Eaton K, Martins R, Poirier J, Rudin C, Milletti F, Cheng W, Mack F, MacPherson D. Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Science Signaling 2019, 12 PMID: 30723171, PMCID: PMC6530478, DOI: 10.1126/scisignal.aau2922.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBasic Helix-Loop-Helix Transcription FactorsCell Line, TumorEnzyme InhibitorsGene Expression Regulation, NeoplasticHistone DemethylasesHumansKaplan-Meier EstimateLung NeoplasmsMice, Inbred NODMice, KnockoutMice, SCIDReceptors, NotchSignal TransductionSmall Cell Lung CarcinomaTumor BurdenXenograft Model Antitumor AssaysConceptsSmall cell lung cancerCell lung cancerNonsmall cell lung cancerLung cancerNotch activationLSD1 inhibitionPatient-derived xenograft modelsLSD1 inhibitorsReactivation of NotchFirst-line standardExpression of Ascl1Durable tumor regressionTranscription factor Ascl1Notch pathway activationLineage genesKnockdown studiesNotch pathwayDownstream signalingCare treatmentPDX modelsTumor regressionTargeted therapySCLC tumorigenesisActionable mutationsXenograft model
2018
Crebbp loss drives small cell lung cancer and increases sensitivity to HDAC inhibition
Jia D, Augert A, Kim D, Eastwood E, Wu N, Ibrahim A, Kim K, Dunn C, Pillai S, Gazdar A, Bolouri H, Park K, MacPherson D. Crebbp loss drives small cell lung cancer and increases sensitivity to HDAC inhibition. Cancer Discovery 2018, 8: cd-18-0385. PMID: 30181244, PMCID: PMC6294438, DOI: 10.1158/2159-8290.cd-18-0385.Peer-Reviewed Original ResearchMeSH KeywordsAcetylationAnimalsCell MovementCell ProliferationCell Transformation, NeoplasticCREB-Binding ProteinDrug Resistance, NeoplasmEpithelial-Mesenchymal TransitionGene Expression Regulation, NeoplasticHistone Deacetylase InhibitorsHistone DeacetylasesHumansLung NeoplasmsMiceMice, KnockoutMutationRetinoblastoma ProteinSmall Cell Lung CarcinomaTumor Cells, CulturedTumor Suppressor Protein p53ConceptsSmall cell lung cancerNeuroendocrine tumor typesCDH1Adhesion genesHistone acetylationTumor typesSignificance:Histone deacetylasesSensitive to HDAC inhibitionCell lung cancerAutochthonous mouse modelExpression of tight junctionHistone deacetylase inhibitorsHistone deacetylase inhibitionCell adhesion genesPituitary carcinomaTargeted therapyGene expression analysisLung cancerTight junctionsMouse modelHDAC inhibitionCDH1 expressionNeuroendocrine cellsMutated genes
2016
Small Cell Lung Cancer Exhibits Frequent Inactivating Mutations in the Histone Methyltransferase KMT2D/MLL2: CALGB 151111 (Alliance)
Augert A, Zhang Q, Bates B, Cui M, Wang X, Wildey G, Dowlati A, MacPherson D. Small Cell Lung Cancer Exhibits Frequent Inactivating Mutations in the Histone Methyltransferase KMT2D/MLL2: CALGB 151111 (Alliance). Journal Of Thoracic Oncology 2016, 12: 704-713. PMID: 28007623, PMCID: PMC5669801, DOI: 10.1016/j.jtho.2016.12.011.Peer-Reviewed Original ResearchConceptsCREB-binding protein geneSCLC cell linesGenomic analysisMonomethylation of histone H3 lysine 4Cell linesHistone H3 lysine 4Mutated genesAssociated with transcriptional enhancersChromodomain helicase DNA binding protein 7 geneTranscriptional enhancer functionH3 lysine 4Human SCLC cell linesAnalysis of somatic mutationsBinding protein geneNeuroendocrine tumor typesPolybromo-1 geneChromatin remodeling genesLysine 4P300 geneTranscriptional enhancersProtein genePrimary SCLCsSCLC tumorsSite mutationReport mutationsThe PLA2R1-JAK2 pathway upregulates ERRα and its mitochondrial program to exert tumor-suppressive action
Griveau A, Devailly G, Eberst L, Navaratnam N, Le Calvé B, Ferrand M, Faull P, Augert A, Dante R, Vanacker J, Vindrieux D, Bernard D. The PLA2R1-JAK2 pathway upregulates ERRα and its mitochondrial program to exert tumor-suppressive action. Oncogene 2016, 35: 5033-5042. PMID: 27041564, DOI: 10.1038/onc.2016.43.Peer-Reviewed Original ResearchMeSH KeywordsCell Line, TumorDNA-Binding ProteinsERRalpha Estrogen-Related ReceptorGene Expression Regulation, NeoplasticGenes, Tumor SuppressorHumansJanus Kinase 2MitochondriaMitochondrial ProteinsNeoplasmsReceptors, EstrogenReceptors, Phospholipase A2Transcription FactorsTranscriptional ActivationConceptsMitochondrial programTumor-suppressive responsesMitochondrial targetingMitochondrial DNA replicationTranscription factor TFAMMitochondrial DNA contentMitochondrial proteinsTumor-suppressive actionDNA replicationMaster regulatorsJAK2 activationTranscriptional programsDownstream effectorsEctopic expressionBiological roleMitochondrial contentDNA contentJAK2PLA2R1PathwayExpressionTFAMTranscriptionOncosuppressionProtein
2015
Multidrug resistance protein 3 loss promotes tumor formation by inducing senescence escape
. Multidrug resistance protein 3 loss promotes tumor formation by inducing senescence escape. Oncogene 2015, 35: 1596-1601. PMID: 26073088, DOI: 10.1038/onc.2015.218.Peer-Reviewed Original Research
2014
Treating Transcriptional Addiction in Small Cell Lung Cancer
. Treating Transcriptional Addiction in Small Cell Lung Cancer. Cancer Cell 2014, 26: 783-784. PMID: 25490443, DOI: 10.1016/j.ccell.2014.11.012.Peer-Reviewed Original ResearchEndoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence
Wiel C, Lallet-Daher H, Gitenay D, Gras B, Le Calvé B, Augert A, Ferrand M, Prevarskaya N, Simonnet H, Vindrieux D, Bernard D. Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nature Communications 2014, 5: 3792. PMID: 24797322, DOI: 10.1038/ncomms4792.Peer-Reviewed Original ResearchConceptsMitochondrial calcium uniporterOncogene-induced senescenceMitochondrial calcium accumulationCalcium releaseEndoplasmic reticulumLoss-of-function genetic screenMitochondrial calcium uniporter channelCalcium accumulationReactive oxygen species accumulationMitochondrial membrane potentialEndoplasmic reticulum calcium releaseInositol 1,4,5-trisphosphate receptorMitochondrial calcium uptakeER-mitochondriaLoss of retinoblastomaSenescence regulationGenetic screeningP53 pathwayCalcium uniporterSpecies accumulationITPR2Calcium channelsFunctional roleCalcium transportReplicative senescence
Get In Touch
Contacts
Administrative Support
Locations
Lauder Hall
Academic Office
310 Cedar Street, Rm LH-315A
New Haven, CT 06510