Menachem Elimelech
Sterling Professor of Chemical and Environmental Engineering and Professor in the School of the EnvironmentCards
About
Research
Publications
2024
Salt partitioning and transport in polyamide reverse osmosis membranes at ultrahigh pressures
Pataroque K, Wu J, He J, Fan H, Mahajan S, Guo K, Le J, Au K, Wang L, Li Y, Hoek E, Elimelech M. Salt partitioning and transport in polyamide reverse osmosis membranes at ultrahigh pressures. Journal Of Membrane Science Letters 2024, 4: 100079. DOI: 10.1016/j.memlet.2024.100079.Peer-Reviewed Original ResearchSalt permeanceSalt partition coefficientReverse osmosisPolyamide reverse osmosis membranesAffecting membrane performancePolyamide layer thicknessFeed salt concentrationReverse osmosis membranesQuartz crystal microbalanceDead-end cellStructure-performance relationshipRO membranesMembrane performancePolyamide layerOsmosis membranesWater transport mechanismFeed salinityOsmotic deswellingFrictional interactionPore sizeFeed concentrationNon-equilibrium molecular dynamics simulationsLayer thicknessPermeanceCrystal microbalanceAnalysis of energy, water, land and cost implications of zero and minimal liquid discharge desalination technologies
O’Connell M, Rajendran N, Elimelech M, Gilron J, Dunn J. Analysis of energy, water, land and cost implications of zero and minimal liquid discharge desalination technologies. Nature Water 2024, 2: 1116-1127. DOI: 10.1038/s44221-024-00327-1.Peer-Reviewed Original ResearchPilot Scale Demonstration of Low-Salt-Rejection Reverse Osmosis (LSRRO) Desalination of High Salinity Brines
Van Houghton B, Rosenblum J, Lampi K, Beaudry E, Herron J, del Cerro M, De Finnda C, Elimelech M, Gilron J, Cath T. Pilot Scale Demonstration of Low-Salt-Rejection Reverse Osmosis (LSRRO) Desalination of High Salinity Brines. ACS ES&T Water 2024, 4: 5089-5104. DOI: 10.1021/acsestwater.4c00673.Peer-Reviewed Original ResearchLow-salt-rejection reverse osmosisSeawater reverse osmosisLow salt rejectionReverse osmosisWater recoveryConventional seawater reverse osmosisHydraulic pressureTreating hypersaline brinesMembrane fabricationPilot scale demonstrationsHigh-salinity brineThermal desalinationFeed streamProcess configurationsScale demonstrationOsmosisStream compositionWater permeabilityWater fluxNaCl solutionTDS concentrationDesalinationMembrane integrity testEnergy consumptionSalinity brineHyping direct seawater electrolysis hinders electrolyzer development
Hausmann J, Winter L, Khan M, Elimelech M, Kibria G, Sontheimer T, Menezes P. Hyping direct seawater electrolysis hinders electrolyzer development. Joule 2024, 8: 2436-2442. DOI: 10.1016/j.joule.2024.07.005.Peer-Reviewed Original ResearchWater splittingSeawater electrolysisElectrochemical oxidation reactionElectrochemical redox reactionsDevelopment of electrocatalystsConversion of CO2Direct seawater electrolysisStructure-activity relationsWater purification membranesEnergy catalysisOxygen catalysisSeawater splittingCO2 electrolysisHeterogeneous catalysisElectrocatalytic processInorganic chemistsTechnische Universitat BerlinZero-emission energy carrierMembrane-based technologiesLife cycle analysisRedox reactionsWater electrolysisOxidation reactionNitrogen-based fuelsHeavy-duty transportMolecular simulations of organic solvent transport in dense polymer membranes: Solution-diffusion or pore-flow mechanism?
He J, Fan H, Elimelech M, Li Y. Molecular simulations of organic solvent transport in dense polymer membranes: Solution-diffusion or pore-flow mechanism? Journal Of Membrane Science 2024, 708: 123055. DOI: 10.1016/j.memsci.2024.123055.Peer-Reviewed Original ResearchDense polymer membranesPolymer membranesOrganic solventsSolution-diffusion modelHigh-performance polymer membranesSolvent transportFractional free volumeMolecular-level guidanceOrganic solvent nanofiltrationMolecular dynamics simulationsPore flow mechanismNon-equilibrium molecular dynamics simulationsMembrane pore sizeSolvent sizeSolvent permeanceSolvent nanofiltrationSeparation applicationsTransport mechanisms of waterMolecular simulationsFree volumeDynamics simulationsWater transport mechanismSolventReverse osmosisSolution-diffusionDesigning membranes with specific binding sites for selective ion separations
Violet C, Ball A, Heiranian M, Villalobos L, Zhang J, Uralcan B, Kulik H, Haji-Akbari A, Elimelech M. Designing membranes with specific binding sites for selective ion separations. Nature Water 2024, 2: 706-718. DOI: 10.1038/s44221-024-00279-6.Peer-Reviewed Original ResearchMembrane nanochannelsFunctional groupsCovalent organic frameworksMetal-organic frameworksSelective ion separationIon binding energiesMembrane material designSelective ion transportIon binding affinityEnergy storage technologiesOrganic frameworksIon separationSynthetic methodNanostructured materialsBinding sitesBinding energyMaterial designDesign membranesDrug discoveryAngstrom scaleChemical interactionIonsChemical featuresNanochannelsIon transportSpatial patterns and environmental functions of dissolved organic matter in grassland soils of China
Zhou P, Tian L, Graham N, Song S, Zhao R, Siddique M, Hu Y, Cao X, Lu Y, Elimelech M, Yu W. Spatial patterns and environmental functions of dissolved organic matter in grassland soils of China. Nature Communications 2024, 15: 6356. PMID: 39069514, PMCID: PMC11284229, DOI: 10.1038/s41467-024-50745-8.Peer-Reviewed Original ResearchConceptsFunction of dissolved organic matterOrganic matterSoil dissolved organic matterSouthern region of ChinaHumic-likeRegions of ChinaSoil DOMAnnual ecosystem exchangeContinental scaleSpatial patternsDOMGrassland soilsSpatial associationDry seasonEnvironmental functionsSouthern regionEcosystem exchangeSoils of ChinaEcosystem productivityChinaAquatic environmentHumified fractionsSoilGrasslandGeochemistryDepolymerization mechanisms and closed-loop assessment in polyester waste recycling
Cao J, Liang H, Yang J, Zhu Z, Deng J, Li X, Elimelech M, Lu X. Depolymerization mechanisms and closed-loop assessment in polyester waste recycling. Nature Communications 2024, 15: 6266. PMID: 39048542, PMCID: PMC11269573, DOI: 10.1038/s41467-024-50702-5.Peer-Reviewed Original ResearchSpace time yieldPoly(ethylene terephthalateDimethyl terephthalateC-O bond cleavageDensity functional theory calculationsActivation of CH3OHFunctional theory calculationsLife cycle assessmentIn situ spectroscopyBond activationBond cleavageCycle assessmentGreenhouse-gas emissionsTheory calculationsReaction pathwaysOxygen-vacancyClosed-loop recyclingWaste managementTime yieldWaste recyclingDepolymerization mechanismWaste accumulationCH3OHTerephthalatePET depolymerizationTrends, risks and opportunities in environmental nanotechnology
Huang X, Auffan M, Eckelman M, Elimelech M, Kim J, Rose J, Zuo K, Li Q, Alvarez P. Trends, risks and opportunities in environmental nanotechnology. Nature Reviews Earth & Environment 2024, 5: 572-587. DOI: 10.1038/s43017-024-00567-5.Peer-Reviewed Original ResearchEngineered nanomaterialsRelease of ENMsRisks of engineered nanomaterialsENM concentrationsImpact of engineered nanomaterialsPredicted no-effect concentrationWater treatmentHealth risksEnvironmental applicationsNo-effect concentrationPotential environmental applicationsPotential dischargeEnvironmental health risksLife cycle analysisSynthesized materialsReduced toxicityPollution remediationSewage effluentIncidental releaseEnvironmental nanotechnologyReduced riskEnvironmental impactRiskHealth impactsEnvironmental benefitsThe solution-diffusion model for water transport in reverse osmosis: What went wrong?
Fan H, Heiranian M, Elimelech M. The solution-diffusion model for water transport in reverse osmosis: What went wrong? Desalination 2024, 580: 117575. DOI: 10.1016/j.desal.2024.117575.Peer-Reviewed Original ResearchSolution-diffusion modelRO membranesReverse osmosisWater transport mechanismPore flow modelDesalination membranesDesalination technologiesFrictional interactionTransport mechanismWater transportConcentration gradient of waterFree volumeMembrane poresEnergy efficiencyOsmosisLow costPressure gradientState-of-the-artTheoretical findingsWater flowState-of-the-art desalination technologiesConcentration gradientPore
Academic Achievements & Community Involvement
News
News
- April 15, 2010
The five companies financed in 2009
- April 15, 2008
Nanotubes can kill bacteria
- October 01, 2007
“Touch-me-not” tubes kill bacteria
- August 30, 2007
Yale Scientists Use Nanotechnology to Fight E. coli