Kristen Kim
Research
Publications
2025
Pro-inflammatory macrophage activation does not require inhibition of oxidative phosphorylation
Ball A, Jones A, Nguyễn K, Rios A, Marx N, Hsieh W, Yang K, Desousa B, Kim K, Veliova M, del Mundo Z, Shirihai O, Benincá C, Stiles L, Bensinger S, Divakaruni A. Pro-inflammatory macrophage activation does not require inhibition of oxidative phosphorylation. EMBO Reports 2025, 26: 982-1002. PMID: 39753784, PMCID: PMC11850891, DOI: 10.1038/s44319-024-00351-y.Peer-Reviewed Original ResearchConceptsInhibition of oxidative phosphorylationOxidative phosphorylationPro-inflammatory macrophage activationElectron transport chain inhibitionGenetic modelsMacrophage activationSignaling organellesTCA cycleATP productionBioenergetic parametersPhosphorylationMetabolic phenotypeMetabolite succinateChain inhibitionPro-inflammatory stimuliHuman macrophagesMitochondriaIn vivoEffector functionsPeritoneal macrophagesRespirationCausative linkInhibitionMacrophagesOrganelles
2023
Calculation of ATP production rates using the Seahorse XF Analyzer
Desousa B, Kim K, Jones A, Ball A, Hsieh W, Swain P, Morrow D, Brownstein A, Ferrick D, Shirihai O, Neilson A, Nathanson D, Rogers G, Dranka B, Murphy A, Affourtit C, Bensinger S, Stiles L, Romero N, Divakaruni A. Calculation of ATP production rates using the Seahorse XF Analyzer. EMBO Reports 2023, 24: embr202256380. PMID: 37548091, PMCID: PMC10561364, DOI: 10.15252/embr.202256380.Peer-Reviewed Original ResearchConceptsATP production rateOxidative phosphorylationT cell receptor activationATP-generating pathwaysEmpirical conversion factorsSeahorse XF AnalyzerCell-specific functionsComparison of ATPNeuronal depolarizationReceptor activationMetabolic dysfunctionMetabolic switchMacrophage polarizationResponse to stimuliLiving cellsMammalian metabolismBioenergetic changesPhosphorylationEnergy transductionATP utilizationGlycolysisCulture conditionsATPPhysiological changesATP measurements
2022
Activity of a direct VTA to ventral pallidum GABA pathway encodes unconditioned reward value and sustains motivation for reward
Zhou WL, Kim K, Ali F, Pittenger ST, Calarco CA, Mineur YS, Ramakrishnan C, Deisseroth K, Kwan AC, Picciotto MR. Activity of a direct VTA to ventral pallidum GABA pathway encodes unconditioned reward value and sustains motivation for reward. Science Advances 2022, 8: eabm5217. PMID: 36260661, PMCID: PMC9581470, DOI: 10.1126/sciadv.abm5217.Peer-Reviewed Original ResearchCorrection: Vitamin B3, nicotinamide, enhances mitochondrial metabolism to promote differentiation of the retinal pigment epithelium
Hazim R, Paniagua A, Tang L, Yang K, Kim K, Stiles L, Divakaruni A, Williams D. Correction: Vitamin B3, nicotinamide, enhances mitochondrial metabolism to promote differentiation of the retinal pigment epithelium. Journal Of Biological Chemistry 2022, 298: 102493. PMID: 36191577, PMCID: PMC9531174, DOI: 10.1016/j.jbc.2022.102493.Peer-Reviewed Original ResearchVitamin B3, nicotinamide, enhances mitochondrial metabolism to promote differentiation of the retinal pigment epithelium
Hazim R, Paniagua A, Tang L, Yang K, Kim K, Stiles L, Divakaruni A, Williams D. Vitamin B3, nicotinamide, enhances mitochondrial metabolism to promote differentiation of the retinal pigment epithelium. Journal Of Biological Chemistry 2022, 298: 102286. PMID: 35868562, PMCID: PMC9396405, DOI: 10.1016/j.jbc.2022.102286.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumMitochondrial metabolismPigment epitheliumARPE-19Human fetal RPE cellsRetinal pigment epithelium metabolismRetinal pigment epithelium functionHuman RPE cell lineContext of cellular differentiationRetinal pigment epithelium cellsMitochondrial respirationFetal RPE cellsMitochondrial oxidation of pyruvateRPE cell lineWarburg-like metabolismOxidation of pyruvateEffect of nicotinamideRPE cellsMitochondrial genesRetinal healthCellular functionsPrimary culturesCellular differentiationMetabolic ecosystemMetabolic respiration
2020
Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances learning of cue-reward contingency
Crouse RB, Kim K, Batchelor HM, Girardi EM, Kamaletdinova R, Chan J, Rajebhosale P, Pittenger ST, Role LW, Talmage DA, Jing M, Li Y, Gao XB, Mineur YS, Picciotto MR. Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances learning of cue-reward contingency. ELife 2020, 9: e57335. PMID: 32945260, PMCID: PMC7529459, DOI: 10.7554/elife.57335.Peer-Reviewed Original ResearchConceptsBasolateral amygdalaCue-reward learningActivity of neuronsReward-related eventsNucleus basalisBLA responsesACh levelsPredictors of rewardTerminal fibersNeuron activityReward-predictive cuesCalcium indicatorsAChNeutral cuesEmotional stimuliAversive stimuliReward retrievalTask acquisitionAmygdalaSalient eventsMiceACh sensorTerminal activityQuick acquisitionCuesGlioblastoma Utilizes Fatty Acids and Ketone Bodies for Growth Allowing Progression during Ketogenic Diet Therapy
Sperry J, Condro M, Guo L, Braas D, Vanderveer-Harris N, Kim K, Pope W, Divakaruni A, Lai A, Christofk H, Castro M, Lowenstein P, Le Belle J, Kornblum H. Glioblastoma Utilizes Fatty Acids and Ketone Bodies for Growth Allowing Progression during Ketogenic Diet Therapy. IScience 2020, 23: 101453. PMID: 32861192, PMCID: PMC7471621, DOI: 10.1016/j.isci.2020.101453.Peer-Reviewed Original ResearchKetogenic dietTumor growthFatty acid oxidationRate of tumor growthKetogenic diet therapyTargeted therapyDiet therapyPotential therapiesGlioblastomaTherapyAerobic glycolysisKetone body metabolismCell linesCarnitine palmitoyltransferase 1AKetone bodiesGlioblastoma propagationGrowth inhibitionBody metabolism
2018
Etomoxir Inhibits Macrophage Polarization by Disrupting CoA Homeostasis
Divakaruni A, Hsieh W, Minarrieta L, Duong T, Kim K, Desousa B, Andreyev A, Bowman C, Caradonna K, Dranka B, Ferrick D, Liesa M, Stiles L, Rogers G, Braas D, Ciaraldi T, Wolfgang M, Sparwasser T, Berod L, Bensinger S, Murphy A. Etomoxir Inhibits Macrophage Polarization by Disrupting CoA Homeostasis. Cell Metabolism 2018, 28: 490-503.e7. PMID: 30043752, PMCID: PMC6125190, DOI: 10.1016/j.cmet.2018.06.001.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsA549 CellsAcyl Coenzyme AAnimalsCarnitine O-PalmitoyltransferaseEnzyme InhibitorsEpoxy CompoundsFatty AcidsHCT116 CellsHep G2 CellsHomeostasisHumansInterleukin-4LiverMacrophage ActivationMacrophagesMaleMiceMice, Inbred C57BLMitochondriaMitochondrial ADP, ATP TranslocasesOxidative PhosphorylationRatsRats, Sprague-DawleyConceptsConcentrations of etomoxirLong-chain fatty acidsAdenine nucleotide translocaseInhibition of carnitine palmitoyltransferase-1M(IL-4Free coenzyme ACoA homeostasisCPT2 expressionCarnitine palmitoyltransferase-1CoA metabolismOxidative phosphorylationCoenzyme ALong-chain fatty acid oxidationEnzyme activityEtomoxirCoAFatty acidsMacrophage polarizationAdolescent Nicotine Exposure Alters GABAA Receptor Signaling in the Ventral Tegmental Area and Increases Adult Ethanol Self-Administration
Thomas A, Ostroumov A, Kimmey B, Taormina M, Holden W, Kim K, Brown-Mangum T, Dani J. Adolescent Nicotine Exposure Alters GABAA Receptor Signaling in the Ventral Tegmental Area and Increases Adult Ethanol Self-Administration. Cell Reports 2018, 23: 68-77. PMID: 29617674, PMCID: PMC5983379, DOI: 10.1016/j.celrep.2018.03.030.Peer-Reviewed Original ResearchConceptsVentral tegmental areaAdolescent nicotine exposureNicotine exposureTegmental areaChloride extrusionLateral ventral tegmental areaSubsequent ethanol intakeVTA GABA neuronsNicotine-treated animalsGlucocorticoid receptor activationGABAA Receptor SignalingEthanol Self‐AdministrationGABA neuronsPathological drinkingVTA GABAAlcohol drinkingEthanol intakeReceptor activationSelf-AdministrationRisk profileGABANeuron responsesAdolescent smokingReceptor signalingReversal potential