2025
Understanding the development of a functional brain circuit: reward processing as an illustration
Opendak M, Meyer H, Callaghan B, Abramson L, John S, Bath K, Lee F, Tottenham N, Sullivan R. Understanding the development of a functional brain circuit: reward processing as an illustration. Translational Psychiatry 2025, 15: 53. PMID: 39962048, PMCID: PMC11832941, DOI: 10.1038/s41398-025-03280-z.Peer-Reviewed Original ResearchConceptsReward processingReward systemAberrant reward processingNeural reward circuitsAdult circuit functionEnvironmental demands changePromote adaptive behaviorFunctional brain circuitsBrain network functionDevelopmental research questionsReward circuitReward behaviorPsychiatric disordersBrain circuitsAdaptive behaviorRewardCircuit functionDevelopmental transitionsImpact infantsDevelopmental processesDisordersStimuliBrainBehaviorChildhood
2024
Understanding neural circuit function through synaptic engineering
Rabinowitch I, Colón-Ramos D, Krieg M. Understanding neural circuit function through synaptic engineering. Nature Reviews Neuroscience 2024, 25: 131-139. PMID: 38172626, DOI: 10.1038/s41583-023-00777-8.Peer-Reviewed Original ResearchNeural circuitsNeural circuit functionNew synaptic connectionsVivo neural circuitsNeural circuit manipulationConnexin gap junction proteinsSynaptic plasticitySynaptic connectionsElectrical synapsesGap junction proteinCircuit connectivityJunction proteinsSynapsesCircuit functionNeuronsCircuit manipulationsSpecific signalingSpecific connectionsLight-gated channelsNeuropeptides
2023
VIP interneurons regulate cortical size tuning and visual perception
Ferguson K, Salameh J, Alba C, Selwyn H, Barnes C, Lohani S, Cardin J. VIP interneurons regulate cortical size tuning and visual perception. Cell Reports 2023, 42: 113088. PMID: 37682710, PMCID: PMC10618959, DOI: 10.1016/j.celrep.2023.113088.Peer-Reviewed Original ResearchConceptsState-dependent modulationPyramidal neuronsVIP-INsBehavioral state-dependent modulationCortical circuit functionVasoactive intestinal peptidePrimary visual cortexAwake behaving miceIntestinal peptideGABAergic interneuronsVIP interneuronsCortical activityVisual cortexBehaving miceFeature selectivityInterneuronsSensory processingSpecialized populationCircuit functionStimulus sizeActivity altersDiverse populationsModulationPopulationCortex
2022
Paraventricular glia drive circuit function to control metabolism
Varela L, Horvath TL. Paraventricular glia drive circuit function to control metabolism. Cell Metabolism 2022, 34: 1424-1426. PMID: 36198288, DOI: 10.1016/j.cmet.2022.09.012.Peer-Reviewed Original Research
2021
Ucp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and anxiety-like behavior
Yasumoto Y, Stoiljkovic M, Kim JD, Sestan-Pesa M, Gao XB, Diano S, Horvath TL. Ucp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and anxiety-like behavior. Molecular Psychiatry 2021, 26: 2740-2752. PMID: 33879866, PMCID: PMC8056795, DOI: 10.1038/s41380-021-01105-1.Peer-Reviewed Original ResearchConceptsAnxiety-like behaviorReactive oxygen speciesMicroglia-synapse contactsSpine synapse numberHippocampal circuit functionNeuronal circuit dysfunctionMicroglial productionVentral hippocampusCircuit dysfunctionSpine synapsesSynapse numberAdult brainTransient riseMitochondrial ROS generationMicrogliaBrain functionConditional ablationPhagocytic inclusionsSynaptic elementsProtein 2ROS generationSignificant reductionCircuit functionConsequent accumulationOxygen species
2016
Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition
Collins KM, Bode A, Fernandez RW, Tanis JE, Brewer JC, Creamer MS, Koelle MR. Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition. ELife 2016, 5: e21126. PMID: 27849154, PMCID: PMC5142809, DOI: 10.7554/elife.21126.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCaenorhabditis elegansCaenorhabditis elegans ProteinsChloride ChannelsCholineFeedback, PhysiologicalFemaleGene Expression RegulationLocomotionMotor NeuronsMuscle ContractionOptogeneticsOvipositionPeriodicityReceptors, Biogenic AmineSerotoninSexual Behavior, AnimalSignal TransductionTyramineConceptsPassage of eggsUnderlying neural circuitsUv1 neuroendocrine cellsCommand neuronsMuscle contractionNeural circuitsNeuroendocrine cellsRhythmic activityBehavior circuitsCircuit activityCentral pattern generatorCircuit functionBody bendsFeedback inhibitionSlow locomotionPattern generatorNeuronsActivityVulvaComplexin 3 Increases the Fidelity of Signaling in a Retinal Circuit by Regulating Exocytosis at Ribbon Synapses
Mortensen LS, Park SJ, Ke JB, Cooper BH, Zhang L, Imig C, Löwel S, Reim K, Brose N, Demb JB, Rhee JS, Singer JH. Complexin 3 Increases the Fidelity of Signaling in a Retinal Circuit by Regulating Exocytosis at Ribbon Synapses. Cell Reports 2016, 15: 2239-2250. PMID: 27239031, PMCID: PMC5134263, DOI: 10.1016/j.celrep.2016.05.012.Peer-Reviewed Original ResearchConceptsRod bipolarsAsynchronous releaseAmacrine cell synapsesRetinal ganglion cellsRetinal pathwaysGanglion cellsCell synapsesRetinal circuitsRibbon synapsesMouse retinaMultivesicular releaseNeural circuitsComplexin proteinsSynapsesCircuit functionCplx3SignalingStudy linksReleaseExocytosisRB outputRetina
2015
Synaptic lipids in cortical function and psychiatric disorders
Stutz B, Horvath TL. Synaptic lipids in cortical function and psychiatric disorders. EMBO Molecular Medicine 2015, 8: 3-5. PMID: 26671988, PMCID: PMC4718156, DOI: 10.15252/emmm.201505749.Peer-Reviewed Original ResearchConceptsPsychiatric disordersClinical therapeutic strategiesPathophysiologic mechanismsCortical circuitryCortical functionExcitatory neuronsTherapeutic strategiesAnimal modelsReliable biomarkersPsychiatric diseasesPsychiatric consequencesEMBO Molecular MedicinePsychiatric conditionsMillions of peopleHuman subjectsCircuit functionDisordersLipidsMolecular medicinePatientsPathophysiologyEtiologyDiseaseMiceNeuronsDeconstructing N-Methyl-D-Aspartate Glutamate Receptor Contributions to Cortical Circuit Functions to Construct Better Hypotheses About the Pathophysiology of Schizophrenia
Krystal JH. Deconstructing N-Methyl-D-Aspartate Glutamate Receptor Contributions to Cortical Circuit Functions to Construct Better Hypotheses About the Pathophysiology of Schizophrenia. Biological Psychiatry 2015, 77: 508-510. PMID: 25687430, DOI: 10.1016/j.biopsych.2014.10.010.Peer-Reviewed Original Research
2014
Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood
Levy AD, Omar MH, Koleske AJ. Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood. Frontiers In Neuroanatomy 2014, 8: 116. PMID: 25368556, PMCID: PMC4202714, DOI: 10.3389/fnana.2014.00116.Peer-Reviewed Original ResearchDendritic spinesMost excitatory synapsesCentral nervous systemLate-onset diseaseBrain extracellular matrixExcitatory synapsesExtracellular matrixSynapse stabilityOnset diseaseNervous systemSpine stabilityAlzheimer's diseaseSynapse formationAdult spineSynapse structureAdult animalsSpineDiseaseNormal functionSpine structureCircuit functionCritical regulatorAdulthoodMeshwork of proteinsECM receptorsChapter 3 Prefrontal Limbic-Striatal Circuits and Alcohol Addiction in Humans
Seo D, Sinha R. Chapter 3 Prefrontal Limbic-Striatal Circuits and Alcohol Addiction in Humans. 2014, 49-63. DOI: 10.1016/b978-0-12-405941-2.00003-1.Peer-Reviewed Original Research
2013
Rapid and Permanent Neuronal Inactivation In Vivo via Subcellular Generation of Reactive Oxygen with the Use of KillerRed
Williams DC, Bejjani RE, Ramirez PM, Coakley S, Kim SA, Lee H, Wen Q, Samuel A, Lu H, Hilliard MA, Hammarlund M. Rapid and Permanent Neuronal Inactivation In Vivo via Subcellular Generation of Reactive Oxygen with the Use of KillerRed. Cell Reports 2013, 5: 553-563. PMID: 24209746, PMCID: PMC3877846, DOI: 10.1016/j.celrep.2013.09.023.Peer-Reviewed Original ResearchConceptsReactive oxygen speciesC. elegansGenetic toolsOrganelle fragmentationPlasma membraneSpecific developmental outcomesSubcellular responsesCell deathKillerRedReactive oxygenOxygen speciesTargeted cellCircuit functionSingle light stimulusSingle animalInactivationElegansCellsVivoCell bodiesSpeciesNeuronal degenerationNeuronsAnimalsNeuronal inactivation
2012
Peptide Neuromodulation in Invertebrate Model Systems
Taghert PH, Nitabach MN. Peptide Neuromodulation in Invertebrate Model Systems. Neuron 2012, 76: 82-97. PMID: 23040808, PMCID: PMC3466441, DOI: 10.1016/j.neuron.2012.08.035.Peer-Reviewed Original ResearchConceptsInvertebrate model systemsGenetic model organism Drosophila melanogasterModel organism Drosophila melanogasterAdaptive animal behaviourModel systemCaenorhabditis elegansDrosophila melanogasterPhysiological processesReproductive behaviorSophisticated behavioral paradigmsPhysiological approachAnimal behaviorCircadian rhythmNeuropeptide modulationMelanogasterElegansInsectsNeural circuitsCircuit functionCrustaceansNematodesMollusksPeptide neuromodulationCentral pattern generationNeuropeptidesGhrelin and the central regulation of feeding and energy balance
Abizaid A, Horvath TL. Ghrelin and the central regulation of feeding and energy balance. Indian Journal Of Endocrinology And Metabolism 2012, 16: 617-626. PMID: 23565498, PMCID: PMC3602992, DOI: 10.4103/2230-8210.105580.Peer-Reviewed Original Research
2011
Determination of Cortical Circuit Function Using Current Source-Density Analysis In Vivo
Higley M. Determination of Cortical Circuit Function Using Current Source-Density Analysis In Vivo. Neuromethods 2011, 67: 205-218. DOI: 10.1007/7657_2011_6.Peer-Reviewed Original ResearchCurrent source density analysisLocal field potentialsSource density analysisCortical circuit functionPathological activity patternsSmall neuronal populationsExtracellular current sinksRodent neocortexSynaptic activityRelative technical easeNeuronal populationsCognitive functionNeural synaptic activityCortical networksTechnical easeMotor planningField potentialsCircuit functionCSD analysisFunctional mapsSensory encodingActivity patternsVivoCurrent sinkLFP signalsLong-term plasticity at inhibitory synapses
Castillo P, Chiu C, Carroll R. Long-term plasticity at inhibitory synapses. Current Opinion In Neurobiology 2011, 21: 328-338. PMID: 21334194, PMCID: PMC3092861, DOI: 10.1016/j.conb.2011.01.006.Peer-Reviewed Original ResearchConceptsSynaptic plasticityInhibitory synaptic plasticityModification of neural circuitsNeural circuitsNeural circuit refinementNeural circuit functionGABAergic plasticityRegulate excitabilityExcitatory/inhibitory balanceInhibitory plasticityCircuit refinementExcitatory synapsesLong-term plasticitySynaptic efficacyFunctional relevanceCircuit functionDiverse mechanismsLTP/LTDEfficacySynapses
2010
Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2
Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols 2010, 5: 247-254. PMID: 20134425, PMCID: PMC3655719, DOI: 10.1038/nprot.2009.228.Peer-Reviewed Original ResearchConceptsOptical interferenceMajor long-term goalViral vectorsCell-type selectivityRecording of neuronsOptogenetic stimulationChannelrhodopsin-2Cre-dependent expressionBrain circuit functionSelective cell typesInhibitory interneuronsIntracellular recordingsVivo electrophysiologyExcitatory neuronsIntact brainType selectivityNeural subtypesOptogenetic techniquesSpecific populationsNeural activityCircuit functionNeuronsInterferenceCell typesStimulation
2008
Molecular identification of a retinal cell type that responds to upward motion
Kim IJ, Zhang Y, Yamagata M, Meister M, Sanes JR. Molecular identification of a retinal cell type that responds to upward motion. Nature 2008, 452: 478-482. PMID: 18368118, DOI: 10.1038/nature06739.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply