2023
Comparative connectomics and escape behavior in larvae of closely related Drosophila species
Zhu J, Boivin J, Pang S, Xu C, Lu Z, Saalfeld S, Hess H, Ohyama T. Comparative connectomics and escape behavior in larvae of closely related Drosophila species. Current Biology 2023, 33: 2491-2503.e4. PMID: 37285846, DOI: 10.1016/j.cub.2023.05.043.Peer-Reviewed Original ResearchConceptsRelated Drosophila speciesDrosophila speciesEscape behaviorDrosophilid speciesRelated speciesMelanogasterSantomeaVentral nerve cordPlausible mechanistic explanationCommon partnerBehavioral traitsMolecular componentsNoxious cuesComparative connectomicsUnderlying neural circuitsSpeciesDownstream partnersMDIVMechanistic explanation
2022
An incentive circuit for memory dynamics in the mushroom body of Drosophila melanogaster
Gkanias E, McCurdy LY, Nitabach MN, Webb B. An incentive circuit for memory dynamics in the mushroom body of Drosophila melanogaster. ELife 2022, 11: e75611. PMID: 35363138, PMCID: PMC8975552, DOI: 10.7554/elife.75611.Peer-Reviewed Original ResearchConceptsFlexible behavioral controlConditioning paradigmNeural mechanismsNegative reinforcementMemory acquisitionBehavioral controlMemory dynamicsExploration/exploitationDrosophila melanogasterPlasticity rulesMushroom bodiesComputational modellingAcquisitionMemorySpecific neuronsStimuliDifferent rolesParadigmDrosophilaMelanogasterInsectsShort termFindingsNeuronsDopaminergic
2020
Connectomics: Bringing Fly Neural Circuits into Focus
Lizbinski KM, Jeanne JM. Connectomics: Bringing Fly Neural Circuits into Focus. Current Biology 2020, 30: r944-r947. PMID: 32810456, DOI: 10.1016/j.cub.2020.06.068.Peer-Reviewed Original Research
2019
Elevated CO2 regulates the Wnt signaling pathway in mammals, Drosophila melanogaster and Caenorhabditis elegans
Shigemura M, Lecuona E, Angulo M, Dada LA, Edwards MB, Welch LC, Casalino-Matsuda SM, Sporn PHS, Vadász I, Helenius IT, Nader GA, Gruenbaum Y, Sharabi K, Cummins E, Taylor C, Bharat A, Gottardi CJ, Beitel GJ, Kaminski N, Budinger GRS, Berdnikovs S, Sznajder JI. Elevated CO2 regulates the Wnt signaling pathway in mammals, Drosophila melanogaster and Caenorhabditis elegans. Scientific Reports 2019, 9: 18251. PMID: 31796806, PMCID: PMC6890671, DOI: 10.1038/s41598-019-54683-0.Peer-Reviewed Original ResearchConceptsLarge-scale transcriptomic studyAvailable transcriptomic datasetsCell linesWnt pathway genesOrganismal functionDrosophila melanogasterElevated CO2Different tissue originsTranscriptomic studiesBronchial cell lineCO2 elevationTranscriptomic datasetsGenomic responsesHuman bronchial cell linePathway genesGene expressionDifferent tissuesGenesHigh CO2Tissue originMammalsSkeletal musclePathwayCaenorhabditisMelanogaster22THE PSYCHIATRIC RISK GENE NT5C2 REGULATES PROTEIN TRANSLATION IN HUMAN NEURAL PROGENITOR CELLS, AND IS INVOLVED IN LOCOMOTOR BEHAVIOUR IN DROSOPHILA MELANOGASTER
Duarte R, Bachtel N, Eleftherianos I, Nixon D, Murray R, Bray N, Powell T, Srivastava D. 22THE PSYCHIATRIC RISK GENE NT5C2 REGULATES PROTEIN TRANSLATION IN HUMAN NEURAL PROGENITOR CELLS, AND IS INVOLVED IN LOCOMOTOR BEHAVIOUR IN DROSOPHILA MELANOGASTER. European Neuropsychopharmacology 2019, 29: s1078. DOI: 10.1016/j.euroneuro.2018.08.029.Peer-Reviewed Original Research
2017
A Mesh–Duox pathway regulates homeostasis in the insect gut
Xiao X, Yang L, Pang X, Zhang R, Zhu Y, Wang P, Gao G, Cheng G. A Mesh–Duox pathway regulates homeostasis in the insect gut. Nature Microbiology 2017, 2: 17020. PMID: 28248301, PMCID: PMC5332881, DOI: 10.1038/nmicrobiol.2017.20.Peer-Reviewed Original ResearchConceptsInsect gutERK phosphorylation cascadeCentral homeostatic mechanismDrosophila melanogasterMetazoan gutComplex communitiesPhosphorylation cascadeBacterial microbiomeDual oxidaseDuox expressionGut bacteriaGut bacterial microbiomeBlood mealHomeostasisBacterial microorganismsAedes aegyptiPathwayHomeostatic mechanismsMicroorganismsPhysiological changesGutExpressionMelanogasterImportant roleDynamic changes
2016
Rab8 directs furrow ingression and membrane addition during epithelial formation in Drosophila melanogaster
Mavor L, Miao H, Zuo Z, Holly R, Xie Y, Loerke D, Blankenship J. Rab8 directs furrow ingression and membrane addition during epithelial formation in Drosophila melanogaster. Journal Of Cell Science 2016, 129: e1.1-e1.1. DOI: 10.1242/jcs.188474.Peer-Reviewed Original ResearchDrosophila tools and assays for the study of human diseases
Ugur B, Chen K, Bellen HJ. Drosophila tools and assays for the study of human diseases. Disease Models & Mechanisms 2016, 9: 235-244. PMID: 26935102, PMCID: PMC4833332, DOI: 10.1242/dmm.023762.Peer-Reviewed Original ResearchConceptsHuman diseasesHuman disease-causing genesUse of DrosophilaDrosophila melanogasterDisease-causing genesMolecular parallelsSpecific genesMolecular mechanismsPhysiological processesPathogenic mechanismsMorphological differencesCellular featuresFliesGenesMolecular pathogenesisInternal organ systemsAssaysCentral nervous systemDrosophilaMelanogasterVertebratesPowerful toolNervous systemOrgan systemsOrganisms
2014
OrthoClust: an orthology-based network framework for clustering data across multiple species
Yan KK, Wang D, Rozowsky J, Zheng H, Cheng C, Gerstein M. OrthoClust: an orthology-based network framework for clustering data across multiple species. Genome Biology 2014, 15: r100. PMID: 25249401, PMCID: PMC4289247, DOI: 10.1186/gb-2014-15-8-r100.Peer-Reviewed Original ResearchConceptsMultiple speciesCo-association networksRNA-seq expression profilesNon-coding RNAsOrthology relationshipsCaenorhabditis elegansDrosophila melanogasterModENCODE consortiumIndividual speciesGenomic dataExpression profilesHigh-dimensional genomic dataUncharacterized elementsAnalogous functionsSpeciesMelanogasterElegansGenesRNAOrganismsComputational frameworkConsortium
2013
Drosophila Life Span and Physiology Are Modulated by Sexual Perception and Reward
Gendron CM, Kuo TH, Harvanek ZM, Chung BY, Yew JY, Dierick HA, Pletcher SD. Drosophila Life Span and Physiology Are Modulated by Sexual Perception and Reward. Science 2013, 343: 544-548. PMID: 24292624, PMCID: PMC4042187, DOI: 10.1126/science.1243339.Peer-Reviewed Original ResearchConceptsDrosophila life spanMale fruit fliesRNA sequencing experimentsLife spanDrosophila melanogasterFemale sexual pheromoneGustatory receptorsFruit flyPheromone perceptionSequencing experimentsNeuropeptide FMolecular processesSexual pheromonesPheromone effectsPhysiologyFat storesMelanogasterTaxaSensory perceptionMatingFliesStarvationPheromoneNeuronsReceptors
2012
Peptide Neuromodulation in Invertebrate Model Systems
Taghert PH, Nitabach MN. Peptide Neuromodulation in Invertebrate Model Systems. Neuron 2012, 76: 82-97. PMID: 23040808, PMCID: PMC3466441, DOI: 10.1016/j.neuron.2012.08.035.Peer-Reviewed Original ResearchConceptsInvertebrate model systemsGenetic model organism Drosophila melanogasterModel organism Drosophila melanogasterAdaptive animal behaviourModel systemCaenorhabditis elegansDrosophila melanogasterPhysiological processesReproductive behaviorSophisticated behavioral paradigmsPhysiological approachAnimal behaviorCircadian rhythmNeuropeptide modulationMelanogasterElegansInsectsNeural circuitsCircuit functionCrustaceansNematodesMollusksPeptide neuromodulationCentral pattern generationNeuropeptidesDietary phosphate modifies lifespan in Drosophila
Bergwitz C. Dietary phosphate modifies lifespan in Drosophila. Nephrology Dialysis Transplantation 2012, 27: 3399-3406. PMID: 22942172, DOI: 10.1093/ndt/gfs362.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsImportant cellular processesNutrient-sensing pathwaysDrosophila melanogasterCellular processesLifespan extensionLarval developmentPhosphonoformic acidHuman disordersNormal fliesCellular uptakeSpecific pathwaysEffects of dietary phosphateDrosophilaReduced lifespanModel systemReduced cellular uptakeAdult lifespanLittle phosphateAbsorption of phosphatePathwayLifespanDietary phosphateTherapeutic approachesMelanogasterPowerful toolExpression of Ixodes scapularis Antifreeze Glycoprotein Enhances Cold Tolerance in Drosophila melanogaster
Neelakanta G, Hudson AM, Sultana H, Cooley L, Fikrig E. Expression of Ixodes scapularis Antifreeze Glycoprotein Enhances Cold Tolerance in Drosophila melanogaster. PLOS ONE 2012, 7: e33447. PMID: 22428051, PMCID: PMC3302814, DOI: 10.1371/journal.pone.0033447.Peer-Reviewed Original ResearchMeSH KeywordsAcclimatizationAnalysis of VarianceAnimalsAnimals, Genetically ModifiedAntifreeze ProteinsApoptosisCold TemperatureDrosophila melanogasterEmbryo, NonmammalianEnzyme-Linked Immunosorbent AssayFemaleImmunoblottingIn Situ Nick-End LabelingIxodesMaleMusclesOligonucleotidesReal-Time Polymerase Chain ReactionConceptsNon-freezing temperaturesD. melanogasterDrosophila melanogasterCold toleranceLow non-freezing temperaturesFemale adult fliesTransgenic D. melanogasterCold shock injuryAbility of fliesAntifreeze glycoproteinsAdult fliesMolecular basisMelanogasterFlight musclesFliesAntifreeze proteinsHatching rateHigher survival rateApoptotic damageGlycoproteinExpressionToleranceEmbryosProteinApoptosis
2011
Insulators, Not Polycomb Response Elements, Are Required for Long-Range Interactions between Polycomb Targets in Drosophila melanogaster
Li HB, Müller M, Bahechar IA, Kyrchanova O, Ohno K, Georgiev P, Pirrotta V. Insulators, Not Polycomb Response Elements, Are Required for Long-Range Interactions between Polycomb Targets in Drosophila melanogaster. Molecular And Cellular Biology 2011, 31: 616-625. PMID: 21135119, PMCID: PMC3028641, DOI: 10.1128/mcb.00849-10.Peer-Reviewed Original ResearchConceptsPolycomb response elementsPcG targetsPcG complexesResponse elementChromosome conformation capture methodsPolycomb group complexesFab-7 elementHigher-order organizationPolycomb targetsDrosophila melanogasterEnhanced repressionInsulator activityRepressive activityTrans interactionsRegulatory elementsPhysical colocalizationFunctional assaysGroup complexesCapture methodComplexesFluorescence imagingPolycombDrosophilaMelanogasterMajor determinant
2010
Evolution of a Distinct Genomic Domain in Drosophila: Comparative Analysis of the Dot Chromosome in Drosophila melanogaster and Drosophila virilis
Leung W, Shaffer C, Cordonnier T, Wong J, Itano M, Tempel E, Kellmann E, Desruisseau D, Cain C, Carrasquillo R, Chusak T, Falkowska K, Grim K, Guan R, Honeybourne J, Khan S, Lo L, McGaha R, Plunkett J, Richner J, Richt R, Sabin L, Shah A, Sharma A, Singhal S, Song F, Swope C, Wilen C, Buhler J, Mardis E, Elgin S. Evolution of a Distinct Genomic Domain in Drosophila: Comparative Analysis of the Dot Chromosome in Drosophila melanogaster and Drosophila virilis. Genetics 2010, 185: 1519-1534. PMID: 20479145, PMCID: PMC2927774, DOI: 10.1534/genetics.110.116129.Peer-Reviewed Original ResearchConceptsDot chromosomeD. virilisDrosophila melanogasterDistinct genomic domainsHigh repeat densityLow codon biasHigh-quality sequence dataHeterochromatic propertiesEuchromatic domainsRepeat densityD. melanogasterFourth chromosomeLarge gene sizeMost genesDrosophila virilisGene sizeCodon biasGene modelsGenomic domainsSequence dataVirilisMelanogasterChromosomesUnusual domainGenome ConsortiumThe olfactory circuit of the fruit fly Drosophila melanogaster
Liang L, Luo L. The olfactory circuit of the fruit fly Drosophila melanogaster. Science China Life Sciences 2010, 53: 472-484. PMID: 20596914, DOI: 10.1007/s11427-010-0099-z.Peer-Reviewed Original Research
2009
Exercise-Training in Young Drosophila melanogaster Reduces Age-Related Decline in Mobility and Cardiac Performance
Piazza N, Gosangi B, Devilla S, Arking R, Wessells R. Exercise-Training in Young Drosophila melanogaster Reduces Age-Related Decline in Mobility and Cardiac Performance. PLOS ONE 2009, 4: e5886. PMID: 19517023, PMCID: PMC2691613, DOI: 10.1371/journal.pone.0005886.Peer-Reviewed Original ResearchConceptsInvertebrate genetic model systemGenetic model systemUnbiased genetic screenGenetic screenDrosophila melanogasterGenetic basisYoung fliesMitochondrial efficiencyAmount of proteinFliesExercise training modelPhysiological responsesModel systemGenetic therapiesMelanogasterMechanized platformNegative geotaxisLociProteinPhenotypeResponseGreat promiseLipidsAge-related declineMajor sourceThe Yb protein defines a novel organelle and regulates male germline stem cell self-renewal in Drosophila melanogaster
Szakmary A, Reedy M, Qi H, Lin H. The Yb protein defines a novel organelle and regulates male germline stem cell self-renewal in Drosophila melanogaster. Journal Of Cell Biology 2009, 185: 613-627. PMID: 19433453, PMCID: PMC2711570, DOI: 10.1083/jcb.200903034.Peer-Reviewed Original ResearchConceptsYB proteinsNiche cellsYb bodiesElectron-dense spheresDrosophila melanogasterGermline stem cell maintenanceMale germline stem cellsGermline stem cellsStem cell maintenanceStem cellsC-terminal regionSomatic stem cellsN-terminal regionD. melanogasterNovel organellePiwi expressionGermline cellsDouble mutantCell maintenanceNovel lociSomatic cellsCytoplasmic spotsMelanogasterCytoplasmic structuresGermline lossAnalysis of Drosophila Segmentation Network Identifies a JNK Pathway Factor Overexpressed in Kidney Cancer
Liu J, Ghanim M, Xue L, Brown CD, Iossifov I, Angeletti C, Hua S, Nègre N, Ludwig M, Stricker T, Al-Ahmadie HA, Tretiakova M, Camp RL, Perera-Alberto M, Rimm DL, Xu T, Rzhetsky A, White KP. Analysis of Drosophila Segmentation Network Identifies a JNK Pathway Factor Overexpressed in Kidney Cancer. Science 2009, 323: 1218-1222. PMID: 19164706, PMCID: PMC2756524, DOI: 10.1126/science.1157669.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsApoptosisCarcinoma, Renal CellCell LineCompound Eye, ArthropodDrosophila melanogasterDrosophila ProteinsEmbryo, NonmammalianFushi Tarazu Transcription FactorsGene Expression ProfilingGene Regulatory NetworksHomeodomain ProteinsHumansJanus KinasesKidneyKidney NeoplasmsMolecular Sequence DataNervous SystemNuclear ProteinsPhosphoprotein PhosphatasesPhosphorylationRepressor ProteinsSignal TransductionTranscription FactorsTranscription, GeneticConceptsTranscription factorsClear cell renal cell carcinomaCell renal cell carcinomaKey transcription factorDrosophila segmentation networkConserved roleEmbryonic segmentationDrosophila melanogasterUbiquitin E3JNK signalingDependent apoptosisSPOPRenal cell carcinomaSPOP expressionKidney cancerTumor necrosis factorNew roleDrosophilaMelanogasterPuckeredGenesSignalingOverexpressedIdentificationApoptosis
2008
The evolution of courtship behaviors through the origination of a new gene in Drosophila
Dai H, Chen Y, Chen S, Mao Q, Kennedy D, Landback P, Eyre-Walker A, Du W, Long M. The evolution of courtship behaviors through the origination of a new gene in Drosophila. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 7478-7483. PMID: 18508971, PMCID: PMC2396706, DOI: 10.1073/pnas.0800693105.Peer-Reviewed Original ResearchConceptsMale-male courtshipD. melanogasterChimeric geneCourtship behaviorNew genesRelated Drosophila speciesNew chimeric genesDrosophila speciesAdaptive evolutionMutant phenotypeDrosophila melanogasterAncestral conditionUnrelated genesPhenotypic effectsMelanogasterNovel phenotypesCombination of sequenceMating behaviorChimeric structureGenesCourtshipSpeciesPhenotypeDrosophilaKnockout
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply