2024
Encoding and context-dependent control of reward consumption within the central nucleus of the amygdala
Fraser K, Kim T, Castro M, Drieu C, Padovan-Hernandez Y, Chen B, Pat F, Ottenheimer D, Janak P. Encoding and context-dependent control of reward consumption within the central nucleus of the amygdala. IScience 2024, 27: 109652. PMID: 38650988, PMCID: PMC11033178, DOI: 10.1016/j.isci.2024.109652.Peer-Reviewed Original ResearchCentral amygdalaCentral nucleus of the amygdalaEnhanced alcohol intakeOptogenetic stimulationAlcohol use disorderAmygdala neural activityCentral amygdala neuronsReward consumptionDrinking sucroseReward choicesUse disorderAberrant choiceAmygdala neuronsAmygdala stimulationCentral nucleusNeural activityAmygdalaReward approachRewardMale ratsActivity changesAlcohol intakeAlcoholIdentity optionsRats
2022
Brainstem serotonin neurons selectively gate retinal information flow to thalamus
Reggiani J, Jiang Q, Barbini M, Lutas A, Liang L, Fernando J, Deng F, Wan J, Li Y, Chen C, Andermann M. Brainstem serotonin neurons selectively gate retinal information flow to thalamus. Neuron 2022, 111: 711-726.e11. PMID: 36584680, PMCID: PMC10131437, DOI: 10.1016/j.neuron.2022.12.006.Peer-Reviewed Original ResearchConceptsVisual information streamsRetinal ganglion cell typesBrainstem serotonin neuronsFiber photometry recordingsGanglion cell typesTwo-photon calcium imagingSerotonin neuronsVisual thalamusGlutamate releaseSerotonergic axonsRGC axonsSerotonin axonsThalamocortical neuronsAxon stimulationAwake micePresynaptic terminalsCalcium imagingOptogenetic stimulationCalcium activityLocal visual stimuliAxonsThalamusBoutonsVisual stimuliNeurons
2021
Photoreceptive Ganglion Cells Drive Circuits for Local Inhibition in the Mouse Retina
Pottackal J, Walsh HL, Rahmani P, Zhang K, Justice NJ, Demb JB. Photoreceptive Ganglion Cells Drive Circuits for Local Inhibition in the Mouse Retina. Journal Of Neuroscience 2021, 41: 1489-1504. PMID: 33397711, PMCID: PMC7896016, DOI: 10.1523/jneurosci.0674-20.2020.Peer-Reviewed Original ResearchMeSH KeywordsAmacrine CellsAnimalsCorticotropin-Releasing HormoneElectrophysiological PhenomenaExcitatory Postsynaptic PotentialsFemalegamma-Aminobutyric AcidGap JunctionsMaleMiceMice, Inbred C57BLNeural InhibitionNeuronsOptogeneticsPhotoreceptor Cells, VertebrateRetinaRetinal Cone Photoreceptor CellsRetinal Ganglion CellsRetinal Rod Photoreceptor CellsRod OpsinsSynapsesConceptsGap junction-mediated electrical synapsesAmacrine cellsElectrical synapsesIpRGC activityGanglion cellsRetinal interneuronsRetinal circuitsPhotosensitive retinal ganglion cellsGABAergic amacrine cellsRetinal ganglion cellsWhole-cell recordingsSpecific RGC typesAbsence of rodsIpRGC typesRGC typesPharmacological blockadeRetinal neuronsMelanopsin expressionMature retinaMouse retinaSynaptic circuitsNeuronal circuitsInterneuronsOptogenetic stimulationLocal inhibition
2020
Two-Photon Optogenetic Stimulation of Drosophila Neurons
Fişek M, Jeanne JM. Two-Photon Optogenetic Stimulation of Drosophila Neurons. Methods In Molecular Biology 2020, 2191: 97-108. PMID: 32865741, DOI: 10.1007/978-1-0716-0830-2_7.Peer-Reviewed Original Research
2019
The critical role of persistent sodium current in hippocampal gamma oscillations
Kang YJ, Clement EM, Sumsky SL, Xiang Y, Park IH, Santaniello S, Greenfield LJ, Garcia-Rill E, Smith BN, Lee SH. The critical role of persistent sodium current in hippocampal gamma oscillations. Neuropharmacology 2019, 162: 107787. PMID: 31550457, PMCID: PMC6952064, DOI: 10.1016/j.neuropharm.2019.107787.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCA1 Region, HippocampalCalcium-Calmodulin-Dependent Protein Kinase Type 2Excitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGABAergic NeuronsGamma RhythmHippocampusInhibitory Postsynaptic PotentialsInterneuronsMiceOptogeneticsParvalbuminsPatch-Clamp TechniquesPhenytoinPyramidal CellsRiluzoleSodiumVoltage-Gated Sodium Channel BlockersConceptsParvalbumin-expressing basket cellsHippocampal gamma oscillationsCortical gamma oscillationsGABAergic interneuronsGamma oscillationsPyramidal cellsNon-inactivating sodium currentExcitatory cellsSodium currentWhole-cell patch-clamp recordingsNetwork oscillationsPatch-clamp recordingsPersistent sodium currentGamma network oscillationsAnticonvulsant efficacyGamma frequency rangeEpilepsy patientsBasket cellsCognitive impairmentAction potentialsSynaptic propertiesSynaptic interactionsOptogenetic stimulationElectrophysiological approachesCA1 networkOptogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects
Hare BD, Shinohara R, Liu RJ, Pothula S, DiLeone RJ, Duman RS. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nature Communications 2019, 10: 223. PMID: 30644390, PMCID: PMC6333924, DOI: 10.1038/s41467-018-08168-9.Peer-Reviewed Original ResearchConceptsMedial prefrontal cortexAntidepressant effectsPyramidal cellsNovel rapid-acting antidepressantsRapid antidepressant effectsRapid-acting antidepressantsRapid antidepressant responseRapid antidepressant actionsAntidepressant actionAntidepressant responsePyramidal neuronsTherapeutic responseDRD2 dopamine receptorAnxiolytic responseDopamine receptorsSomatic stimulationTarget neuronsImpaired functionMajor subtypesOptogenetic stimulationParticular subtypeDownstream circuitryPrefrontal cortexKetamineNeurons
2015
Optogenetic stimulation of cholinergic brainstem neurons during focal limbic seizures: Effects on cortical physiology
Furman M, Zhan Q, McCafferty C, Lerner BA, Motelow JE, Meng J, Ma C, Buchanan GF, Witten IB, Deisseroth K, Cardin JA, Blumenfeld H. Optogenetic stimulation of cholinergic brainstem neurons during focal limbic seizures: Effects on cortical physiology. Epilepsia 2015, 56: e198-e202. PMID: 26530287, PMCID: PMC4679683, DOI: 10.1111/epi.13220.Peer-Reviewed Original ResearchConceptsFocal limbic seizuresLimbic seizuresCortical functionBrainstem neuronsCortical dysfunctionFocal temporal lobe seizuresOptogenetic stimulationCortical slow-wave activityDepressed cortical functionSubcortical cholinergic neuronsTemporal lobe seizuresLoss of consciousnessPedunculopontine tegmental nucleusAnesthetized rat modelSlow wave activityCortical gamma activitySleep-like stateCholinergic neuronsFocal seizuresArousal networkCholinergic stimulationTegmental nucleusRat modelCortical physiologySeizuresOptogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions
Fuchikami M, Thomas A, Liu R, Wohleb ES, Land BB, DiLeone RJ, Aghajanian GK, Duman RS. Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 8106-8111. PMID: 26056286, PMCID: PMC4491758, DOI: 10.1073/pnas.1414728112.Peer-Reviewed Original ResearchConceptsIL-PFCOptogenetic stimulationAntidepressant actionAnxiolytic effectsSystemic ketamineLayer V pyramidal neuronsSystemic ketamine administrationInfralimbic prefrontal cortexPrecise cellular mechanismsKetamine infusionKetamine administrationPyramidal neuronsAnxiolytic actionDepressed patientsSpine synapsesSynaptic responsesNeuronal inactivationRodent modelsNeuronal activityKetaminePrefrontal cortexBehavioral actionsCellular mechanismsStimulationPatientsVagal Sensory Neuron Subtypes that Differentially Control Breathing
Chang R, Strochlic D, Williams E, Umans B, Liberles S. Vagal Sensory Neuron Subtypes that Differentially Control Breathing. Cell 2015, 161: 622-633. PMID: 25892222, PMCID: PMC4842319, DOI: 10.1016/j.cell.2015.03.022.Peer-Reviewed Original ResearchConceptsSlow-conducting C fibersVagus nervePulmonary endocrine cellsVagus nerve afferentsC-fibersFast-conducting A fibersSensory neuronsShallow breathingNeuroepithelial bodiesNerve afferentsAutonomic functionImpact heart rateA fibersAnatomical mappingBrainstem targetsGastric pressureOptogenetic stimulationVagal controlHeart rateNeuronsNormal respirationEndocrine cellsBreathingLungP2RY1
2014
Sensory determinants of behavioral dynamics in Drosophila thermotaxis
Klein M, Afonso B, Vonner AJ, Hernandez-Nunez L, Berck M, Tabone CJ, Kane EA, Pieribone VA, Nitabach MN, Cardona A, Zlatic M, Sprecher SG, Gershow M, Garrity PA, Samuel AD. Sensory determinants of behavioral dynamics in Drosophila thermotaxis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 112: e220-e229. PMID: 25550513, PMCID: PMC4299240, DOI: 10.1073/pnas.1416212112.Peer-Reviewed Original ResearchPerception of Odors Linked to Precise Timing in the Olfactory System
Rebello MR, McTavish TS, Willhite DC, Short SM, Shepherd GM, Verhagen JV. Perception of Odors Linked to Precise Timing in the Olfactory System. PLOS Biology 2014, 12: e1002021. PMID: 25514030, PMCID: PMC4267717, DOI: 10.1371/journal.pbio.1002021.Peer-Reviewed Original ResearchOlfactory learning promotes input-specific synaptic plasticity in adult-born neurons
Lepousez G, Nissant A, Bryant AK, Gheusi G, Greer CA, Lledo PM. Olfactory learning promotes input-specific synaptic plasticity in adult-born neurons. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 13984-13989. PMID: 25189772, PMCID: PMC4183341, DOI: 10.1073/pnas.1404991111.Peer-Reviewed Original ResearchConceptsAdult-born granule cellsAdult-born neuronsInput-specific synaptic plasticityOlfactory bulbGranule cellsOlfactory cortexSynaptic plasticityOptogenetic stimulationOlfactory learningSelective optogenetic stimulationOlfactory information processingCircuit remodelingCortical projectionsSpine densityAdult neurogenesisOB neuronsNew neuronsExcitatory inputsInhibitory inputsSynaptic mechanismsDendritic portionsDendritic treeNeuronsFunctional plasticityElectrophysiological analysisMedial prefrontal D1 dopamine neurons control food intake
Land BB, Narayanan NS, Liu RJ, Gianessi CA, Brayton CE, M Grimaldi D, Sarhan M, Guarnieri DJ, Deisseroth K, Aghajanian GK, DiLeone RJ. Medial prefrontal D1 dopamine neurons control food intake. Nature Neuroscience 2014, 17: 248-253. PMID: 24441680, PMCID: PMC3968853, DOI: 10.1038/nn.3625.Peer-Reviewed Original ResearchMeSH KeywordsAmygdalaAnalysis of VarianceAnimalsBiophysicsCalcium-Calmodulin-Dependent Protein Kinase Type 2ChannelrhodopsinsEatingElectric StimulationFemaleFood DeprivationFunctional LateralityGene Expression RegulationIn Vitro TechniquesLuminescent ProteinsMaleMembrane PotentialsMiceMice, Inbred C57BLMice, TransgenicNeural InhibitionNeural PathwaysNeuronsOptogeneticsPatch-Clamp TechniquesPhotic StimulationPrefrontal CortexReceptors, Dopamine D1Time Factors
2010
Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2
Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols 2010, 5: 247-254. PMID: 20134425, PMCID: PMC3655719, DOI: 10.1038/nprot.2009.228.Peer-Reviewed Original ResearchConceptsOptical interferenceMajor long-term goalViral vectorsCell-type selectivityRecording of neuronsOptogenetic stimulationChannelrhodopsin-2Cre-dependent expressionBrain circuit functionSelective cell typesInhibitory interneuronsIntracellular recordingsVivo electrophysiologyExcitatory neuronsIntact brainType selectivityNeural subtypesOptogenetic techniquesSpecific populationsNeural activityCircuit functionNeuronsInterferenceCell typesStimulation
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply