2024
Non-canonical type 1 cannabinoid receptor signaling regulates night visual processing in the inner rat retina
Estay S, Morales-Moraga C, Vielma A, Palacios-Muñoz A, Chiu C, Chávez A. Non-canonical type 1 cannabinoid receptor signaling regulates night visual processing in the inner rat retina. IScience 2024, 27: 109920. PMID: 38799553, PMCID: PMC11126983, DOI: 10.1016/j.isci.2024.109920.Peer-Reviewed Original ResearchA17 amacrine cellsRod bipolar cellsVisual processingType 1 cannabinoid receptorGABAergic feedback inhibitionNon-canonical mechanismRat retinal slicesAmacrine cellsCB1R activationRetinal slicesGlutamate releaseInner retinaRat retinaRetinal neuronsRod pathwayCB1RExchange proteinFeedback inhibitionBipolar cellsRod-drivenAxon terminalsTime courseGABAVisual responsesRetina
2021
Photoreceptive Ganglion Cells Drive Circuits for Local Inhibition in the Mouse Retina
Pottackal J, Walsh HL, Rahmani P, Zhang K, Justice NJ, Demb JB. Photoreceptive Ganglion Cells Drive Circuits for Local Inhibition in the Mouse Retina. Journal Of Neuroscience 2021, 41: 1489-1504. PMID: 33397711, PMCID: PMC7896016, DOI: 10.1523/jneurosci.0674-20.2020.Peer-Reviewed Original ResearchMeSH KeywordsAmacrine CellsAnimalsCorticotropin-Releasing HormoneElectrophysiological PhenomenaExcitatory Postsynaptic PotentialsFemalegamma-Aminobutyric AcidGap JunctionsMaleMiceMice, Inbred C57BLNeural InhibitionNeuronsOptogeneticsPhotoreceptor Cells, VertebrateRetinaRetinal Cone Photoreceptor CellsRetinal Ganglion CellsRetinal Rod Photoreceptor CellsRod OpsinsSynapsesConceptsGap junction-mediated electrical synapsesAmacrine cellsElectrical synapsesIpRGC activityGanglion cellsRetinal interneuronsRetinal circuitsPhotosensitive retinal ganglion cellsGABAergic amacrine cellsRetinal ganglion cellsWhole-cell recordingsSpecific RGC typesAbsence of rodsIpRGC typesRGC typesPharmacological blockadeRetinal neuronsMelanopsin expressionMature retinaMouse retinaSynaptic circuitsNeuronal circuitsInterneuronsOptogenetic stimulationLocal inhibition
2018
Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas
Yao K, Qiu S, Wang YV, Park SJH, Mohns EJ, Mehta B, Liu X, Chang B, Zenisek D, Crair MC, Demb JB, Chen B. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature 2018, 560: 484-488. PMID: 30111842, PMCID: PMC6107416, DOI: 10.1038/s41586-018-0425-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsbeta CateninBlindnessCell CycleCell ProliferationCellular ReprogrammingDisease Models, AnimalFemaleGTP-Binding Protein alpha SubunitsHeterotrimeric GTP-Binding ProteinsMaleMiceNeurogenesisNeurogliaRegenerative MedicineRetinal Rod Photoreceptor CellsStem CellsTranscription FactorsTransducinVisual CortexVisual PathwaysConceptsMüller gliaGene transferMG proliferationRod photoreceptorsMammalian retinaCell fate specificationPopulations of stemSubsequent gene transferFate specificationRetinal stem cellsTranscription factorsRetinal neuronsCell cycleDouble mutant miceRegenerative machineryDe novo genesisΒ-cateninStem cellsProgenitor cellsRestoration of visionPrimary visual cortexMutant miceAbsence of injuryPhotoreceptorsRetinal injury
2017
Zika Virus Targeting in the Developing Brain
van den Pol AN, Mao G, Yang Y, Ornaghi S, Davis JN. Zika Virus Targeting in the Developing Brain. Journal Of Neuroscience 2017, 37: 2161-2175. PMID: 28123079, PMCID: PMC5338758, DOI: 10.1523/jneurosci.3124-16.2017.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAntiviral AgentsBrainCell Line, TransformedCells, CulturedDisease Models, AnimalGene Expression Regulation, ViralHumansImmunocompromised HostInterferonsMental DisordersMiceMice, TransgenicNervous System DiseasesNeurogliaNeuronsReceptors, InterferonZika VirusZika Virus InfectionConceptsZika virusPeripheral inoculationZIKV infectionSomatosensory cortexType 1 interferon responseContralateral somatosensory cortexSecond trimester human fetusesEarly neonatal stageDay of birthNormal mouse brainSerious neurological problemsMidline brain regionsDevelopmental mouse modelAstrocyte infectionRNA flavivirusInfected astrocytesCortical thinningOptic tractImmunocompetent miceLateral geniculateRetinal neuronsGlial cellsMouse modelNeurological problemsNewborn miceEpigenetics and Signaling Pathways in Glaucoma
Gauthier AC, Liu J. Epigenetics and Signaling Pathways in Glaucoma. BioMed Research International 2017, 2017: 5712341. PMID: 28210622, PMCID: PMC5292191, DOI: 10.1155/2017/5712341.Peer-Reviewed Original ResearchConceptsPotential new therapeutic targetGeneration of fibrosisNovel therapeutic agentsNew therapeutic targetsAqueous humor drainageProapoptotic gene expressionRetinal neuronsIrreversible blindnessCommon causeHuman trialsTherapeutic targetAnimal modelsTrabecular meshworkTherapeutic agentsNeurodegenerative diseasesProsurvival factorBcl-2Rho-kinaseGlaucomaSignaling pathwaysPathway membersMAP kinaseGene expressionPathwayPreliminary success
2012
Intrinsic properties and functional circuitry of the AII amacrine cell
DEMB JB, SINGER JH. Intrinsic properties and functional circuitry of the AII amacrine cell. Visual Neuroscience 2012, 29: 51-60. PMID: 22310372, PMCID: PMC3561778, DOI: 10.1017/s0952523811000368.Peer-Reviewed Original ResearchConceptsAII amacrine cellsAmacrine cellsPhotopic conditionsOFF ganglion cellsRod amacrine cellsCone bipolar cellsGanglion cell typesCone-mediated visionRod-mediated visionAII networkCell typesGanglion cellsRetinal neuronsExcitatory interneuronsBipolar cellsMammalian retinaFunctional circuitryAIIDistinct cell typesOutput neuronsNeuronsInhibition pathwayMotion sensitivityPhotoreceptor pathwaysCells
2008
Molecular identification of a retinal cell type that responds to upward motion
Kim IJ, Zhang Y, Yamagata M, Meister M, Sanes JR. Molecular identification of a retinal cell type that responds to upward motion. Nature 2008, 452: 478-482. PMID: 18368118, DOI: 10.1038/nature06739.Peer-Reviewed Original Research
2006
Retinopetal Axons in Mammals: Emphasis on Histamine and Serotonin
Gastinger MJ, Tian N, Horvath T, Marshak DW. Retinopetal Axons in Mammals: Emphasis on Histamine and Serotonin. Current Eye Research 2006, 31: 655-667. PMID: 16877274, PMCID: PMC3351198, DOI: 10.1080/02713680600776119.Peer-Reviewed Original ResearchConceptsRetinopetal axonsEffects of serotoninCentral nervous systemRetina of mammalsDorsal rapheHistaminergic neuronsOptic nervePosterior hypothalamusInner retinaBrain stemRetinal neuronsNervous systemRetinal diseasesAxonsArousal systemNeuronsHistamineAnatomical studyRetinaPerikaryaSerotoninNerveHypothalamusEtiologyRaphe
1998
Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors
Takahashi T, Nakamura F, Jin Z, Kalb R, Strittmatter S. Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors. Nature Neuroscience 1998, 1: 487-493. PMID: 10196546, DOI: 10.1038/2203.Peer-Reviewed Original Research
1994
GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowth
Strittmatter S, Igarashi M, Fishman M. GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowth. Journal Of Neuroscience 1994, 14: 5503-5513. PMID: 8083750, PMCID: PMC6577098, DOI: 10.1523/jneurosci.14-09-05503.1994.Peer-Reviewed Original ResearchConceptsGAP-43G-protein activityPertussis toxinNeuronal growth-associated protein GAP-43Neurite outgrowthGrowth-associated protein GAP-43Dorsal root ganglion cellsG protein-mediated eventsGrowth cone membraneDorsal root gangliaProtein GAP-43N1E-115 neuroblastoma cellsChick dorsal root ganglion cellsChick dorsal root gangliaNeurite extensionCone membraneEmbryonic chick dorsal root gangliaRoot gangliaGanglion cellsRetinal neuronsPeptide stimulationGrowth cone collapseGrowth cone morphologyNeuroblastoma cellsPotential modulators
1991
Vitronectin and thrombospondin promote retinal neurite outgrowth: Developmental regulation and role of integrins
Neugebauer K, Emmett C, Venstrom K, Reichardt L. Vitronectin and thrombospondin promote retinal neurite outgrowth: Developmental regulation and role of integrins. Neuron 1991, 6: 345-358. PMID: 1705807, DOI: 10.1016/0896-6273(91)90244-t.Peer-Reviewed Original ResearchConceptsRetinal neuronsEmbryonic chick retinal neuronsChick retinal neuronsNeurite outgrowthNeurite outgrowth-promoting moleculesRetinal neurite outgrowthBeta 1 subunitRole of integrinsAxonal growthAlpha vSpecific receptorsRetinal developmentNeuronal developmentExtracellular matrix glycoproteinNeuronsReceptorsNeuroretinaThrombospondinMatrix glycoproteinGlycoproteinVitronectin
1990
Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors.
Kuljis R, Rakic P. Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors. Proceedings Of The National Academy Of Sciences Of The United States Of America 1990, 87: 5303-5306. PMID: 2164675, PMCID: PMC54311, DOI: 10.1073/pnas.87.14.5303.Peer-Reviewed Original ResearchConceptsLayers II/IIINeuropeptide YInterblob regionsVisual cortexAspiny stellate cellsCytochrome oxidase-rich blobsCytochrome oxidase blobsPrimate visual cortexRetinal ablationCerebral cortexRetinal neuronsDistinct physiological propertiesControl animalsStellate cellsOperated animalsMacaque monkeysSynaptic connectionsCortexPattern visionRetinal photoreceptorsNeuronsChemoarchitectonic organizationAbsence of cuesColor visionPhotoreceptors
1988
N-cadherin, NCAM, and integrins promote retinal neurite outgrowth on astrocytes in vitro.
Neugebauer K, Tomaselli K, Lilien J, Reichardt L. N-cadherin, NCAM, and integrins promote retinal neurite outgrowth on astrocytes in vitro. Journal Of Cell Biology 1988, 107: 1177-1187. PMID: 3262111, PMCID: PMC2115273, DOI: 10.1083/jcb.107.3.1177.Peer-Reviewed Original ResearchConceptsRetinal neuronsRetinal neurite outgrowthOptic pathwayCell adhesion moleculeNeurite outgrowthAdhesion moleculesEmbryonic chick retinal neuronsInhibitory effectRetinal ganglion neuronsChick retinal neuronsNeuronal cell surface proteinsN-cadherinDetectable inhibitory effectAttachment of neuronsEmbryonic day 7Ganglion neuronsDay 7Astrocyte monolayersIntegrin extracellular matrix receptorsNeuronsCell surface proteinsExtracellular matrix receptorsNCAMAstrocytesAxon extension
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply