2016
MicroRNAs in Control of Stem Cells in Normal and Malignant Hematopoiesis
Roden C, Lu J. MicroRNAs in Control of Stem Cells in Normal and Malignant Hematopoiesis. Current Stem Cell Reports 2016, 2: 183-196. PMID: 27547713, PMCID: PMC4988405, DOI: 10.1007/s40778-016-0057-1.Peer-Reviewed Original ResearchHematopoietic stem cellsStem cellsPost-transcriptional gene regulation mechanismSpecific gene expression programsPost-transcriptional gene expressionSmall non-coding RNAsGene expression programsLeukemia stem cellsGene regulation mechanismsFunction of miRNAsNon-coding RNAsStudy of miRNAsRole of miRNAsCell signaling pathwaysLSC biologyCancer stem cell conceptStem cell fieldEpigenetic machineryExpression programsHSC emergenceEpigenetic programsStem cell conceptEpigenetic regulatorsDifferentiated progenyHSC nicheRegulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family
Hysolli E, Tanaka Y, Su J, Kim KY, Zhong T, Janknecht R, Zhou XL, Geng L, Qiu C, Pan X, Jung YW, Cheng J, Lu J, Zhong M, Weissman SM, Park IH. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family. Stem Cell Reports 2016, 7: 43-54. PMID: 27373925, PMCID: PMC4945581, DOI: 10.1016/j.stemcr.2016.05.014.Peer-Reviewed Original ResearchConceptsDNA methylation stateEmbryonic stem cellsInduced pluripotent stem cellsHuman somatic cell reprogrammingSomatic cell reprogrammingMethylation stateCell reprogrammingMiR-29 familyDNA methylation landscapeImportant epigenetic regulatorsStem cellsOverexpression of Oct4Global DNA methylationMiRNA-based approachesPluripotent stem cellsMethylation landscapeHistone modificationsDNA demethylationEpigenomic changesEarly reprogrammingEpigenetic regulatorsEpigenetic differencesDNA methylationHydroxymethylation analysisReprogrammingmiR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells
Lechman ER, Gentner B, Ng SW, Schoof EM, van Galen P, Kennedy JA, Nucera S, Ciceri F, Kaufmann KB, Takayama N, Dobson SM, Trotman-Grant A, Krivdova G, Elzinga J, Mitchell A, Nilsson B, Hermans KG, Eppert K, Marke R, Isserlin R, Voisin V, Bader GD, Zandstra PW, Golub TR, Ebert BL, Lu J, Minden M, Wang JC, Naldini L, Dick JE. miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells. Cancer Cell 2016, 29: 214-228. PMID: 26832662, PMCID: PMC4749543, DOI: 10.1016/j.ccell.2015.12.011.Peer-Reviewed Original ResearchConceptsLeukemia stem cellsMiR-126Human acute myeloid leukemia stem cellsAcute myeloid leukemia stem cellsMyeloid leukemia stem cellsPI3K/Akt/mTORMiR-126 expressionAkt/mTORMalignant hematopoietic stem cellsMiR-126 regulationStem cellsMiR-126 targetsLSC activityLSC quiescenceAML samplesChemotherapy resistanceHematopoietic stem cellsHematopoietic stem cell cyclingMiRNA signatureCell cycle progressionLSC functionCycle progressionStem cell cyclingSignature miRNAsCell cycling
2013
C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells
Di Stefano B, Sardina JL, van Oevelen C, Collombet S, Kallin EM, Vicent GP, Lu J, Thieffry D, Beato M, Graf T. C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells. Nature 2013, 506: 235-239. PMID: 24336202, DOI: 10.1038/nature12885.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCCAAT-Enhancer-Binding Protein-alphaCell TransdifferentiationCells, CulturedCellular ReprogrammingChromatinCytosineDeoxyribonuclease IDioxygenasesDNA MethylationDNA-Binding ProteinsEpithelial-Mesenchymal TransitionInduced Pluripotent Stem CellsKruppel-Like Factor 4Kruppel-Like Transcription FactorsMiceOctamer Transcription Factor-3Proto-Oncogene ProteinsProto-Oncogene Proteins c-mycSOXB1 Transcription FactorsUp-RegulationConceptsInduced pluripotent stem cellsPluripotent stem cellsTranscription factors Oct4Stem cellsTET2 enzymeChromatin accessibilityPluripotency genesRapid reprogrammingEfficient reprogrammingFactors OCT4B cell precursorsReprogrammingCell precursorsCellsB cellsGenesKLF4MYCSOX2OverexpressionEnzymeExpressionActivation
2010
MicroRNA miR-125a controls hematopoietic stem cell number
Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC, Purton LE, Fleming HH, Cobb B, Merkenschlager M, Golub TR, Scadden DT. MicroRNA miR-125a controls hematopoietic stem cell number. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 14229-14234. PMID: 20616003, PMCID: PMC2922532, DOI: 10.1073/pnas.0913574107.Peer-Reviewed Original ResearchConceptsHematopoietic stem cellsStem cell pool sizeStem cell stateLong-term hematopoietic stem cellsCell-autonomous mannerStem cellsStem cell populationCell pool sizeMiR-125aStem cell numbersHematopoietic stem cell numbersEnzyme DicerImmature hematopoietic progenitorsHematopoietic differentiationMutant animalsCell statesProgenitor cell apoptosisMicroRNA processing enzyme DicerMicroRNA clusterProapoptotic genesHSPC populationsHematopoietic expansionSpecific microRNAsUnique microRNAsHSPC apoptosis
2009
microRNA Expression during Trophectoderm Specification
Viswanathan SR, Mermel CH, Lu J, Lu CW, Golub TR, Daley GQ. microRNA Expression during Trophectoderm Specification. PLOS ONE 2009, 4: e6143. PMID: 19582159, PMCID: PMC2702083, DOI: 10.1371/journal.pone.0006143.Peer-Reviewed Original ResearchConceptsEmbryonic stem cellsTrophectoderm specificationPreimplantation developmentMurine embryosFirst cell fate decisionCell fate decisionsTight developmental regulationStem cellsInner cell massCandidate miRNAsNumber of miRNAsStages of embryogenesisRole of microRNAsMiRNA expression changesMammalian developmentTranscription factorsDevelopmental regulationEctopic expressionTarget genesExpression changesTrophectodermal cellsTrophectodermMiRNA expressionFunctional roleMiRNAsRegulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization
Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ, Erfurth FE, Eaton K, Lu J, Grimes HL, Chen J, Rowley JD, Zeleznik-Le NJ. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 2009, 113: 3314-3322. PMID: 19188669, PMCID: PMC2665896, DOI: 10.1182/blood-2008-04-154310.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCell DifferentiationCell ProliferationCell Transformation, NeoplasticCells, CulturedEmbryonic Stem CellsGene Expression RegulationHistone-Lysine N-MethyltransferaseLeukemiaMiceMice, Inbred C57BLMicroRNAsMolecular Sequence DataMyeloid-Lymphoid Leukemia ProteinRecombinant Fusion ProteinsSequence Homology, Nucleic AcidUp-RegulationConceptsMLL fusion proteinsHox genesMiR-196bLeukemogenic MLL fusion proteinsFusion proteinEmbryonic stem cell differentiationStem cell differentiationDifferentiated hematopoietic cellsShort-term hematopoietic stem cellsMixed lineage leukemia (MLL) geneBone marrow progenitor cellsLeukemia developmentHOXA clusterHematopoietic stem cellsPrimary leukemia samplesChimeric proteinMarrow progenitor cellsHematopoietic lineagesCell differentiationLeukemia geneFusion contributesChromosomal translocationsHematopoietic cellsGenesStem cells
2008
The Growth Factor Environment Defines Distinct Pluripotent Ground States in Novel Blastocyst-Derived Stem Cells
Chou YF, Chen HH, Eijpe M, Yabuuchi A, Chenoweth JG, Tesar P, Lu J, McKay RD, Geijsen N. The Growth Factor Environment Defines Distinct Pluripotent Ground States in Novel Blastocyst-Derived Stem Cells. Cell 2008, 135: 449-461. PMID: 18984157, PMCID: PMC2767270, DOI: 10.1016/j.cell.2008.08.035.Peer-Reviewed Original ResearchConceptsStem cell linesGrowth factor environmentPluripotent stateTissue of originCell linesEmbryonic stem cell linesPluripotent ground stateBlastocyst embryosStem cell identityCell-cell interactionsGrowth factor conditionsStem cell typesFactor environmentPostimplantation epiblastCell identityES cellsDevelopmental stagesCell typesStem cellsFunctional differencesCritical roleEmbryosGrowth factorGrowth factor milieuEpiSCs