Featured Publications
The Cellular Response to Neuregulins Is Governed by Complex Interactions of the erbB Receptor Family
Riese D, van Raaij T, Plowman G, Andrews G, Stern D. The Cellular Response to Neuregulins Is Governed by Complex Interactions of the erbB Receptor Family. Molecular And Cellular Biology 1995, 15: 5770-5776. PMID: 7565730, PMCID: PMC230829, DOI: 10.1128/mcb.15.10.5770.Peer-Reviewed Original ResearchConceptsReceptor familyEpidermal growth factor receptor tyrosine kinase familyErbB family receptorsErbB receptor familyReceptor tyrosine kinase familyReceptor tyrosine phosphorylationPeptide agonistsFamily receptorsTyrosine kinase familyHuman cancersReceptor interactionEpidermal growth factor homology domainsCell linesCell survivalReceptorsNeuregulinCellular responsesTyrosine phosphorylationAntiserum raised against a synthetic phosphotyrosine-containing peptide selectively recognizes p185neu/erbB-2 and the epidermal growth factor receptor.
Bangalore L, Tanner AJ, Laudano AP, Stern DF. Antiserum raised against a synthetic phosphotyrosine-containing peptide selectively recognizes p185neu/erbB-2 and the epidermal growth factor receptor. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 11637-11641. PMID: 1280833, PMCID: PMC50608, DOI: 10.1073/pnas.89.23.11637.Peer-Reviewed Original Research
2002
Production of Antibodies That Recognize Specific Tyrosine‐Phosphorylated Peptides
DiGiovanna MP, Roussel RR, Stern DF. Production of Antibodies That Recognize Specific Tyrosine‐Phosphorylated Peptides. Current Protocols In Cell Biology 2002, 13: 16.6.1-16.6.18. PMID: 18228399, DOI: 10.1002/0471143030.cb1606s13.Books
1998
Rad53 FHA Domain Associated with Phosphorylated Rad9 in the DNA Damage Checkpoint
Sun Z, Hsiao J, Fay D, Stern D. Rad53 FHA Domain Associated with Phosphorylated Rad9 in the DNA Damage Checkpoint. Science 1998, 281: 272-274. PMID: 9657725, DOI: 10.1126/science.281.5374.272.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceCell Cycle ProteinsCheckpoint Kinase 2DNA DamageDNA ReplicationFungal ProteinsG2 PhaseHydroxyureaMethyl MethanesulfonateMitosisMutationOligopeptidesPeptidesPhosphorylationProtein KinasesProtein Serine-Threonine KinasesSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsTranscription, GeneticConceptsRad53 phosphorylationRad53 protein kinaseDNA damage signalsDNA damage checkpointProtein-binding domainsCell cycle phase arrestRNR3 transcriptionRad9 proteinFHA domainDamage checkpointG2/M cell cycle phase arrestCell divisionProtein kinaseSaccharomyces cerevisiaeDamage signalsRad9DNA damageRad53Phase arrestPhosphorylationCheckpointDomainCerevisiaeTranscriptionKinase
1986
Differential responsiveness of myc- and ras-transfected cells to growth factors: selective stimulation of myc-transfected cells by epidermal growth factor.
Stern DF, Roberts AB, Roche NS, Sporn MB, Weinberg RA. Differential responsiveness of myc- and ras-transfected cells to growth factors: selective stimulation of myc-transfected cells by epidermal growth factor. Molecular And Cellular Biology 1986, 6: 870-877. PMID: 3022135, PMCID: PMC367587, DOI: 10.1128/mcb.6.3.870.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, Polyomavirus TransformingAntigens, Viral, TumorCell DivisionCell Transformation, NeoplasticCells, CulturedEpidermal Growth FactorGenesGenes, ViralGrowth SubstancesOncogene Proteins, ViralOncogenesPeptidesPlatelet-Derived Growth FactorPolyomavirusRatsRats, Inbred F344TransfectionTransforming Growth FactorsConceptsEpidermal growth factorPlatelet-derived growth factorExogenous growth factorsSoft agarRas oncogeneGrowth factorEGF-like factorsPresence of PDGFControl cellsAnchorage-independent growthMyc-transfected cellsRas-transfected cellsPresence of EGFLike genesMYCResponsiveness of cellsGrowth factor productionOncogeneAutocrine stimulationNumerous coloniesTGF betaLack of responsivenessGenesSelective stimulationStimulatory effect
1985
Type beta transforming growth factor: a bifunctional regulator of cellular growth.
Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB. Type beta transforming growth factor: a bifunctional regulator of cellular growth. Proceedings Of The National Academy Of Sciences Of The United States Of America 1985, 82: 119-123. PMID: 3871521, PMCID: PMC396983, DOI: 10.1073/pnas.82.1.119.Peer-Reviewed Original ResearchConceptsGrowth factorEpidermal growth factorColony formationAnchorage-independent growthNRK fibroblastsType betaPlatelet-derived growth factorHuman lung carcinoma cellsLung carcinoma cellsBreast carcinoma cell linesCarcinoma cell linesCellular myc geneLung carcinomaHuman tumor cellsHuman melanomaAnchorage-dependent growthHuman placentaTumor cellsCarcinoma cellsCell cycle timeHuman plateletsCell linesSoft agarTwo-chain polypeptideBifunctional regulator
1982
Structural analysis of virion proteins of the avian coronavirus infectious bronchitis virus
Stern DF, Burgess L, Sefton BM. Structural analysis of virion proteins of the avian coronavirus infectious bronchitis virus. Journal Of Virology 1982, 42: 208-219. PMID: 6283141, PMCID: PMC256062, DOI: 10.1128/jvi.42.1.208-219.1982.Peer-Reviewed Original ResearchConceptsAmino-terminal domainAvian coronavirus infectious bronchitis virusCoronavirus infectious bronchitis virusPartial proteolytic digestionVirion proteinsTwo-dimensional tryptic peptide mappingProteolytic digestionNon-glycosylated proteinsNon-glycosylated proteinTryptic peptide mappingVitro translationRelated proteinsGp31Major polypeptidesFormyl-methionineInfectious bronchitis virusProteinP23Peptide mappingInfected cellsProteolytic fragmentsMinor speciesMarked polymorphismGp28Bronchitis virus