2025
P-623 MFF is required for mitochondria-associated ribonucleoprotein domain coalescence and mRNA translation in mammalian oocytes
Hua R, Zhuo H, Gu J, Du H, Xiao Y, Yeung W, Wang T. P-623 MFF is required for mitochondria-associated ribonucleoprotein domain coalescence and mRNA translation in mammalian oocytes. Human Reproduction 2025, 40: deaf097.929. DOI: 10.1093/humrep/deaf097.929.Peer-Reviewed Original ResearchMitochondrial fission factorMitochondrial membrane potentialRNA-binding proteinsMammalian oocytesMouse oocytesMRNA translational activityMRNA translationGerminal vesicle (GV)-stage oocytesCo-IPMitochondrial dynamicsOocyte meiotic maturationRegulation of mitochondrial dynamicsMetaphase I stageTranslational activityGV stageGV oocytesRegulation of translationJC-1 stainingATP metabolic processRegulate mRNA translationWestern blot analysisGene ontology analysisMeiotic maturationWider implicationsOocyte maturationP-682 A high proportion of immature oocytes in a cycle cohort does not impair embryo development or live birth rates following ICSI
Sakkas D, Sripada V, Vaughan D, Morse B, Fouks Y. P-682 A high proportion of immature oocytes in a cycle cohort does not impair embryo development or live birth rates following ICSI. Human Reproduction 2025, 40: deaf097.988. DOI: 10.1093/humrep/deaf097.988.Peer-Reviewed Original ResearchLive birth rateIntracytoplasmic sperm injectionProportion of immature oocytesBirth rateGonadotropin dosageIn vitro fertilizationPropensity score matchingMetaphase IIImmature oocytesPresence of immature oocytesEmbryo transferFresh embryo transferAssociated with fertilization rateCryopreserved embryo transferCycle cohortPGT-ABlastocyst formationRatio groupFewer blastocystsPoor oocyte qualityGroups propensity score matchingGerminal vesicleOocyte maturationEmbryo developmentOvarian stimulation
2024
O-077 Depletion of MFF from oocytes impairs mitochondrial dynamics, leading to inhibited oocyte maturation and early embryonic development in mice
Hua R, Hai Z, Gu J, Yeung W, Wang T. O-077 Depletion of MFF from oocytes impairs mitochondrial dynamics, leading to inhibited oocyte maturation and early embryonic development in mice. Human Reproduction 2024, 39: deae108.083. DOI: 10.1093/humrep/deae108.083.Peer-Reviewed Original ResearchMitochondrial fission factorEarly embryonic developmentMitochondrial dynamicsGV oocytesOocyte competenceKnockout mouse modelOvulated oocytesOocyte maturationCultured in vitroFemale miceEmbryonic developmentCre-loxP conditional knockout systemMouse modelGerminal vesicleRegulation of mitochondrial dynamicsMethods Female miceIn vitro maturationEmbryo development ratesRegulating mitochondrial dynamicsInhibited oocyte maturationMorphology of mitochondriaEarly embryo developmentPolar body extrusionAbnormal mitochondrial distributionConditional knockout systemAddition of rapamycin or co-culture with cumulus cells from younger reproductive age women does not improve rescue in vitro oocyte maturation or euploidy rates in older reproductive age women
Esbert M, Tao X, Ballesteros A, Yildirim R, Scott R, Seli E. Addition of rapamycin or co-culture with cumulus cells from younger reproductive age women does not improve rescue in vitro oocyte maturation or euploidy rates in older reproductive age women. Molecular Human Reproduction 2024, 30: gaad048. PMID: 38180884, DOI: 10.1093/molehr/gaad048.Peer-Reviewed Original ResearchReproductive-age womenEuploidy rateCumulus cellsAutologous cumulus cellsAge womenReproductive ageRescue IVMOlder womenYoung donorsYoung reproductive age womenYoung womenOlder reproductive age womenOocyte maturationMetaphase II oocytesGerminal vesicle stage oocytesPolar bodyMaternal ageEuploid oocytesFirst polar bodyAddition of rapamycinHours of cultureII oocytesWomenCytogenetic constitutionRapamycin
2023
P-613 Deletion of the CLPP gene in oocytes exacerbates chemotherapy-induced ovarian damage
Gu J, Guo C, Xiao Y, Hua R, Hai Z, Zhao P, Su J, Wang T. P-613 Deletion of the CLPP gene in oocytes exacerbates chemotherapy-induced ovarian damage. Human Reproduction 2023, 38 DOI: 10.1093/humrep/dead093.942.Peer-Reviewed Original ResearchChemotherapy-induced ovarian damageOvarian damageOocyte functionOocyte competenceChemotherapeutic drugsPremature ovarian insufficiencyChemotherapeutic drug cyclophosphamideOocyte-specific deletionTest of miceCaseinolytic peptidase PEarly embryo developmentClpP geneCyclophosphamide modelAneuploidy rateMII oocytesProportion of folliclesMII stageOvarian insufficiencyCKO miceWider implicationsChemotherapy drugsMouse modelMitochondrial distributionDrug cyclophosphamideOocyte maturation
2022
Targeted Deletion of Mitofusin 1 and Mitofusin 2 Causes Female Infertility and Loss of Follicular Reserve
Cozzolino M, Ergun Y, Seli E. Targeted Deletion of Mitofusin 1 and Mitofusin 2 Causes Female Infertility and Loss of Follicular Reserve. Reproductive Sciences 2022, 30: 560-568. PMID: 35739352, DOI: 10.1007/s43032-022-01014-w.Peer-Reviewed Original ResearchConceptsMitofusin 1Mitofusin 2Double deletionFemale reproductive competencePotential functional redundancyDynamic organellesCellular homeostasisFunctional redundancyMitochondrial dynamicsEnvironmental stressMitochondrial functionMitochondrial dysfunctionMfn1Reproductive competenceTargeted deletionMfn2Oocyte maturationDeletionCritical roleReproductive agingFemale infertilityOocytesOocyte qualityFusion mechanismMitofusinsMitochondrial dysfunction caused by targeted deletion of Mfn1 does not result in telomere shortening in oocytes.
Cozzolino M, Seli E. Mitochondrial dysfunction caused by targeted deletion of Mfn1 does not result in telomere shortening in oocytes. Zygote 2022, 30: 735-737. PMID: 35730364, DOI: 10.1017/s0967199422000089.Peer-Reviewed Original ResearchConceptsMitochondrial dysfunctionMaintenance of telomeresTargeted deletionEnd-protection functionTTAGGG repeatsMitochondrial fusionTelomeric repeatsSomatic cellsMitofusin 1Reactive oxygen speciesEnzyme complexWild-type miceOocyte growthDNA damageMouse oocytesTelomerase activityOocyte maturationDeletionFollicular depletionOxygen speciesTelomere lengthTelomeresFollicular developmentOocytesRepeats
2021
P–273 Effects of ovulation induction with GnRH Agonist (GnRHa) on oocyte and embryo quality at the mitochondrial level: A retrospective and experimental study
Basar M, Olcay O, Akcay B, Aydin S, Neslihan M, Findikli N. P–273 Effects of ovulation induction with GnRH Agonist (GnRHa) on oocyte and embryo quality at the mitochondrial level: A retrospective and experimental study. Human Reproduction 2021, 36: deab130.272. DOI: 10.1093/humrep/deab130.272.Peer-Reviewed Original ResearchGnRHa-treated groupsGnRHa triggerHCG groupGnRHa groupEmbryo qualityGnRH agonistHsp60 levelsGnRHa injectionFemale BALB/c miceOvarian hyperstimulation syndrome riskOld female BALB/c miceWestern blotBALB/c miceTotal gonadotropin doseOocyte maturationOvarian hyperstimulation protocolTRIAL REGISTRATION NUMBERMid-cycle surgeInduction of ovulationPARTICIPANTS/MATERIALSNumber of oocytesBetter embryo qualityFinal oocyte maturationROLE OF CHANCEOocyte nuclear maturationFetal programming of polycystic ovary syndrome: Effects of androgen exposure on prenatal ovarian development
Barsky M, Merkison J, Hosseinzadeh P, Yang L, Bruno-Gaston J, Dunn J, Gibbons W, Blesson C. Fetal programming of polycystic ovary syndrome: Effects of androgen exposure on prenatal ovarian development. The Journal Of Steroid Biochemistry And Molecular Biology 2021, 207: 105830. PMID: 33515680, PMCID: PMC8056856, DOI: 10.1016/j.jsbmb.2021.105830.Peer-Reviewed Original ResearchConceptsGene expressionPolycystic ovary syndromeOvarian developmentDifferential gene expressionFetal gonadal developmentDownregulated genesTranscriptional pathwaysCandidate genesMitochondrial studiesMitochondrial oxygen consumptionProton leakOvary syndromeGonadal developmentMitochondrial functionFetal programmingMitochondrial ultrastructureStrong hereditary componentMitochondrial dysfunctionMitochondrial efficiencyMitochondriaAndrogen exposureGenesInheritance patternOocyte maturationAndrogen programming
2020
Loss of dmrt1 restores zebrafish female fates in the absence of cyp19a1a but not rbpms2a/b
Romano S, Kaufman O, Marlow F. Loss of dmrt1 restores zebrafish female fates in the absence of cyp19a1a but not rbpms2a/b. Development 2020, 147: dev190942. PMID: 32895289, PMCID: PMC7541348, DOI: 10.1242/dev.190942.Peer-Reviewed Original ResearchConceptsSex-specific differentiationFemale fateSex determinationLoss of DMRT1Genetic epistasis experimentsEpistasis experimentsAdult gonadsGenetic hierarchyFate specificationFemale differentiationGenetic evidenceDMRT1Fate acquisitionSomatic tissuesAdult sexMutantsCyp19a1aRepressionRBPMS2DifferentiationFateOocyte maturationGermlineOvaryZebrafish
2019
Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve
Zhang M, Bener MB, Jiang Z, Wang T, Esencan E, Scott III R, Horvath T, Seli E. Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve. Cell Death & Disease 2019, 10: 560. PMID: 31332167, PMCID: PMC6646343, DOI: 10.1038/s41419-019-1799-3.Peer-Reviewed Original ResearchConceptsOocyte-granulosa cell communicationDynamic organellesAccumulation of ceramideFemale reproductive agingMitofusin 1Secondary follicle stageMitochondrial dynamicsCell communicationReproductive phenotypesCeramide synthesis inhibitor myriocinDevelopmental arrestApoptotic cell lossMitochondrial dysfunctionTargeted deletionOvarian follicular reserveOocyte maturationFemale fertilityFollicle stageDeletionPhenotypeReproductive agingOocytesCadherinFollicular reserveOrganellesMitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging
Zhang M, Bener MB, Jiang Z, Wang T, Esencan E, Scott R, Horvath T, Seli E. Mitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging. Aging 2019, 11: 3919-3938. PMID: 31204316, PMCID: PMC6628992, DOI: 10.18632/aging.102024.Peer-Reviewed Original ResearchConceptsMitofusin 2Key regulatory proteinsImpaired oocyte maturationFollicle developmentMitochondrial fusionRegulatory proteinsEndoplasmic reticulumMitochondrial dysfunctionTargeted deletionOocyte maturationOocytesReproductive agingFemale subfertilityOocyte qualityOvarian follicular reserveTelomeresMitochondriaMetabolic milieuProteinReticulumDeletionFusionPhenotypeApoptosisMaturationTranslational activation of maternally derived mRNAs in oocytes and early embryos and the role of embryonic poly(A) binding protein (EPAB)
Esencan E, Kallen A, Zhang M, Seli E. Translational activation of maternally derived mRNAs in oocytes and early embryos and the role of embryonic poly(A) binding protein (EPAB). Biology Of Reproduction 2019, 100: 1147-1157. PMID: 30806655, PMCID: PMC8127035, DOI: 10.1093/biolre/ioz034.Peer-Reviewed Original ResearchConceptsTranslational activationBinding proteinSpecific protein complexesTranslation of mRNAsOocyte maturationCis-acting sequencesEarly embryo developmentProtein complexesXenopus modelEarly embryosKey regulatorGene expressionMolecular mechanismsEmbryo developmentTargeted disruptionMechanistic detailsProteinEarly developmentMRNAMice resultsKey mechanismOocytesActivationMaturationTranscription
2018
Vitamin D3 Regulates Follicular Development and Intrafollicular Vitamin D Biosynthesis and Signaling in the Primate Ovary
Xu J, Lawson MS, Xu F, Du Y, Tkachenko OY, Bishop CV, Pejovic-Nezhat L, Seifer DB, Hennebold JD. Vitamin D3 Regulates Follicular Development and Intrafollicular Vitamin D Biosynthesis and Signaling in the Primate Ovary. Frontiers In Physiology 2018, 09: 1600. PMID: 30487754, PMCID: PMC6246691, DOI: 10.3389/fphys.2018.01600.Peer-Reviewed Original ResearchVitamin D receptorVitamin D biosynthesisAntral folliclesVD3 supplementationFollicular developmentVitamin DAntral stagePrimate ovaryFollicle survivalVitamin D3D biosynthesisIsolated secondary folliclesOvarian follicle survivalOocyte maturationAnti-Müllerian hormone productionAdult rhesus macaquesParacrine factor productionStage-dependent mannerVD3 treatmentVDR expressionAMH productionDihydroxyvitamin D3Positive immunostainingD receptorProtein localizationA role of Pumilio 1 in mammalian oocyte maturation and maternal phase of embryogenesis
Mak W, Xia J, Cheng EC, Lowther K, Lin H. A role of Pumilio 1 in mammalian oocyte maturation and maternal phase of embryogenesis. Cell & Bioscience 2018, 8: 54. PMID: 30364263, PMCID: PMC6194604, DOI: 10.1186/s13578-018-0251-1.Peer-Reviewed Original ResearchAbnormal preimplantation developmentPreimplantation developmentPumilio 1Genome-wide transcriptome analysisMaternal effect genesPost-transcriptional regulatorsMammalian oocyte maturationMaternal phaseCDK1 mRNAEmbryo transitionMammalian embryogenesisEffect genesTranscriptome analysisMaternal mRNAsMammalian systemsMRNA targetsPUM1CDK1 proteinConcomitant perturbationMeiotic maturationEmbryogenesisOocyte maturationMeiosisImportant functionsProteinThe role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights
Cecchino GN, Seli E, Alves da Motta E, García-Velasco J. The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights. Reproductive BioMedicine Online 2018, 36: 686-697. PMID: 29598846, DOI: 10.1016/j.rbmo.2018.02.007.Peer-Reviewed Original ResearchConceptsMetabolic stress modelsMitochondrial functionFemale fertilityFemale reproductive processesPoor outcomeReplacement therapyOvarian agingMitochondrial DNA contentInfertility treatmentTherapeutic attemptsOocyte qualityClinical implicationsEmbryo potentialOocyte maturationReproductive processesPrecursor cellsEarly embryo developmentReproductive technologiesDisease-causing mutationsMitochondrial capacityRole of mitochondriaMitochondrial impactCurrent insightsTrophectoderm cellsWomen
2015
Embryonic Poly(A)-Binding Protein (EPAB) Is Required for Granulosa Cell EGF Signaling and Cumulus Expansion in Female Mice
Yang CR, Lowther KM, Lalioti MD, Seli E. Embryonic Poly(A)-Binding Protein (EPAB) Is Required for Granulosa Cell EGF Signaling and Cumulus Expansion in Female Mice. Endocrinology 2015, 157: 405-416. PMID: 26492470, PMCID: PMC4701890, DOI: 10.1210/en.2015-1135.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Morphogenetic Protein 15Cell ProliferationCells, CulturedCoculture TechniquesCumulus CellsEpidermal Growth FactorErbB ReceptorsFemaleGranulosa CellsGrowth Differentiation Factor 9Luteinizing HormoneMAP Kinase Signaling SystemMice, KnockoutOocytesPhosphorylationPoly(A)-Binding ProteinsProtein Processing, Post-TranslationalReceptors, LHSignal TransductionConceptsEpidermal growth factorZygotic genome activationP90 ribosomal S6 kinaseBone morphogenetic protein 15Cumulus cellsRibosomal S6 kinaseImpaired oocyte maturationCumulus expansionGrowth differentiation factor 9Genome activationDifferentiation factor 9S6 kinaseEarly embryosTranslational activationEGF signalingEGF receptorFemale micePhosphorylated MEK1/2EGF treatmentBinding proteinFactor 9Cells exhibitOocyte maturationProteinProtein 15Oocyte mitochondrial function and reproduction
Babayev E, Seli E. Oocyte mitochondrial function and reproduction. Current Opinion In Obstetrics & Gynecology 2015, 27: 175-181. PMID: 25719756, PMCID: PMC4590773, DOI: 10.1097/gco.0000000000000164.Peer-Reviewed Original ResearchConceptsOocyte mitochondrial functionMitochondrial functionEmbryonic developmentMitochondrial nutrientsMitochondrial replacementRole of mitochondriaOogonial stem cellsCellular organellesMammalian reproductionMitochondrial performanceMitochondrial diseaseEmbryo developmentMitochondrial activityMitochondrial dysfunctionOocyte developmentMitochondriaReproductive consequencesStem cellsOocyte maturationMitochondrial abnormalitiesPolar bodyReproductionEnergy productionIntake of compoundsNegative long-term health effects
2014
Superovulation alters embryonic poly(A)-binding protein (Epab) and poly(A)-binding protein, cytoplasmic 1 (Pabpc1) gene expression in mouse oocytes and early embryos
Ozturk S, Yaba-Ucar A, Sozen B, Mutlu D, Demir N. Superovulation alters embryonic poly(A)-binding protein (Epab) and poly(A)-binding protein, cytoplasmic 1 (Pabpc1) gene expression in mouse oocytes and early embryos. Reproduction Fertility And Development 2014, 28: 375-383. PMID: 25034140, DOI: 10.1071/rd14106.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlastocystCells, CulturedChorionic GonadotropinDose-Response Relationship, DrugEmbryo Culture TechniquesFemaleFertility Agents, FemaleGene Expression Regulation, DevelopmentalGonadotropins, EquineMice, Inbred BALB COocytesOvulation InductionPoly(A)-Binding Protein IPoly(A)-Binding ProteinsSuperovulationTime FactorsConceptsEmbryonic poly(A)-binding proteinPregnant mare serum gonadotropinHuman chorionic gonadotrophinEarly embryo developmentAssisted Reproductive TechnologyMII oocytesFemale miceAdministered to female miceGerminal vesicleOocyte maturationEmbryo developmentIncreased postimplantation lossDose of gonadotropinsCycling female miceDecreased implantation rateQuality of oocytesImpaired oocyte maturationGene expressionExperimental animal studiesEffects of superovulationReverse transcription-polymerase chain reactionPoly(A)-binding proteinPotential risk factorsTranscription-polymerase chain reactionImplantation rate
2013
Human embryonic poly(A)-binding protein (EPAB) alternative splicing is differentially regulated in human oocytes and embryos
Guzeloglu-Kayisli O, Lalioti MD, Babayev E, Torrealday S, Karakaya C, Seli E. Human embryonic poly(A)-binding protein (EPAB) alternative splicing is differentially regulated in human oocytes and embryos. Molecular Human Reproduction 2013, 20: 59-65. PMID: 24002949, DOI: 10.1093/molehr/gat061.Peer-Reviewed Original ResearchConceptsZygotic genome activationEarly embryo developmentEarly embryosTranslational activationSomatic tissuesSpliced formsEmbryo developmentEmbryo-specific expressionPost-transcriptional mechanismsOocyte maturationHuman somatic tissuesFull-length formGenome activationExon 8Transcriptional regulationAlternative splicingTranscriptional activityGene expressionHuman oocytesEPABAmino acidsXenopusEmbryosMRNAOocytes
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply