2025
Single-molecule two- and three-colour FRET studies reveal a transition state in SNARE disassembly by NSF
Cheppali S, Li C, Xing W, Sun R, Yang M, Xue Y, Lu S, Yao J, Sun S, Chen C, Sui S. Single-molecule two- and three-colour FRET studies reveal a transition state in SNARE disassembly by NSF. Nature Communications 2025, 16: 250. PMID: 39747074, PMCID: PMC11695992, DOI: 10.1038/s41467-024-55531-0.Peer-Reviewed Original ResearchConceptsN-ethylmaleimide sensitive factorSNARE complexDisassembly of SNARE complexesStable four-helix bundleFour-helix bundleSNARE motifFluorescence spectroscopy approachesMinimal machineryAAA+ ATPasesProtein machineryAdapter proteinVesicle fusionMembrane fusionSyntaxinPhysiological processesSnareProteinN-ethylmaleimideDisassemblySequential disassemblyMachinerySequential pathwayPathwayEukaryotesFusion
2024
Minimal presynaptic protein machinery governing diverse kinetics of calcium-evoked neurotransmitter release
Bose D, Bera M, Norman C, Timofeeva Y, Volynski K, Krishnakumar S. Minimal presynaptic protein machinery governing diverse kinetics of calcium-evoked neurotransmitter release. Nature Communications 2024, 15: 10741. PMID: 39738049, PMCID: PMC11685451, DOI: 10.1038/s41467-024-54960-1.Peer-Reviewed Original ResearchConceptsSynaptotagmin-7Synaptotagmin-1Protein machinerySNARE complex assemblyFusion clampExocytosis processVesicle fusionVesicular fusionComplex assemblySynaptic vesiclesFusion assayMolecular basisPhysiologically relevant conditionsPresynaptic calcium influxNeurotransmitter releaseVesiclesSnareProteinMachineryCompetitive bindingFusion dynamicsComplexinExocytosisFusionCalcium influxDual-Ring SNAREpin Machinery Tuning for Fast Synaptic Vesicle Fusion
Caruel M, Pincet F. Dual-Ring SNAREpin Machinery Tuning for Fast Synaptic Vesicle Fusion. Biomolecules 2024, 14: 600. PMID: 38786007, PMCID: PMC11117985, DOI: 10.3390/biom14050600.Peer-Reviewed Original Research
2023
CTLA-4 tail fusion enhances CAR-T antitumor immunity
Zhou X, Cao H, Fang S, Chow R, Tang K, Majety M, Bai M, Dong M, Renauer P, Shang X, Suzuki K, Levchenko A, Chen S. CTLA-4 tail fusion enhances CAR-T antitumor immunity. Nature Immunology 2023, 24: 1499-1510. PMID: 37500885, PMCID: PMC11344484, DOI: 10.1038/s41590-023-01571-5.Peer-Reviewed Original ResearchConceptsCytoplasmic tailSingle-cell RNA sequencingRNA sequencingC-terminusTail fusionCell engineering techniquesAntigen receptorFurther characterizationCytometry analysisSurface expressionCAR functionLow surface expressionCellsUnique strategyT cellsPowerful therapeuticsFusionEndocytosisLeukemia modelTerminusTailSequencingPhenotypeReduced activationEngineering techniquesGrowing thin — How bulk lipid transport drives expansion of the autophagosome membrane but not of its lumen
Melia T. Growing thin — How bulk lipid transport drives expansion of the autophagosome membrane but not of its lumen. Current Opinion In Cell Biology 2023, 83: 102190. PMID: 37385155, PMCID: PMC10528516, DOI: 10.1016/j.ceb.2023.102190.Peer-Reviewed Original ResearchCoupled CP Tensor Decomposition with Shared and Distinct Components for Multi-Task Fmri Data Fusion
Borsoi R, Lehmann I, Akhonda M, Calhoun V, Usevich K, Brie D, Adali T. Coupled CP Tensor Decomposition with Shared and Distinct Components for Multi-Task Fmri Data Fusion. 2023, 00: 1-5. DOI: 10.1109/icassp49357.2023.10096241.Peer-Reviewed Original ResearchCP tensor decompositionTensor factorization approachDataset-specific featuresTensor-based frameworkPost-processing stepExtract featuresFunctional magnetic resonance imagingHyperparameter selectionTensor decompositionData fusionMulti-taskingDiscover componentsMultiple datasetsTaskCoupling matrixFunctional magnetic resonance imaging dataHyperparametersDatasetFeaturesGroup differencesFactor approachDecompositionFusion
2022
The beginning and the end of SNARE‐induced membrane fusion
Mion D, Bunel L, Heo P, Pincet F. The beginning and the end of SNARE‐induced membrane fusion. FEBS Open Bio 2022, 12: 1958-1979. PMID: 35622519, PMCID: PMC9623537, DOI: 10.1002/2211-5463.13447.Peer-Reviewed Original ResearchMolecular determinants of complexin clamping and activation function
Bera M, Ramakrishnan S, Coleman J, Krishnakumar SS, Rothman JE. Molecular determinants of complexin clamping and activation function. ELife 2022, 11: e71938. PMID: 35442188, PMCID: PMC9020821, DOI: 10.7554/elife.71938.Peer-Reviewed Original ResearchConceptsSynaptotagmin-1Single-vesicle fusionAccessory helixFusion clampHelical domainMolecular detailsComplexinMutational analysisVesicle releaseFusion kineticsMolecular determinantsSpecific interactionsInhibitory functionProbability of fusionRapid CaSNAREpinsAssembly processFusionClamping functionDomainHelixVesiclesFunctionMembraneInteraction
2021
An active tethering mechanism controls the fate of vesicles
An SJ, Rivera-Molina F, Anneken A, Xi Z, McNellis B, Polejaev VI, Toomre D. An active tethering mechanism controls the fate of vesicles. Nature Communications 2021, 12: 5434. PMID: 34521845, PMCID: PMC8440521, DOI: 10.1038/s41467-021-25465-y.Peer-Reviewed Original ResearchConceptsArtificial tetherFull fusionOptogenetic controlExocyst complexExocyst functionVesicle tethersMembrane mergerTethering mechanismTarget membraneIntracellular fusionPlasma membraneMode of fusionVesicle fusionPhysiological relevanceLamellipodial expansionVesiclesTetheringExocystMembraneFusionFurther showTetherFusion modeFateComplexes
2020
A glioneuronal tumor with CLIP2-MET fusion
Chowdhury T, Lee Y, Kim S, Yu H, Ji S, Bae J, Won J, Shin J, Weinberger D, Choi S, Park C, Kim J, Park S. A glioneuronal tumor with CLIP2-MET fusion. Npj Genomic Medicine 2020, 5: 24. PMID: 32550005, PMCID: PMC7270112, DOI: 10.1038/s41525-020-0131-6.Peer-Reviewed Original ResearchSynergistic roles of Synaptotagmin-1 and complexin in calcium-regulated neuronal exocytosis
Ramakrishnan S, Bera M, Coleman J, Rothman JE, Krishnakumar SS. Synergistic roles of Synaptotagmin-1 and complexin in calcium-regulated neuronal exocytosis. ELife 2020, 9: e54506. PMID: 32401194, PMCID: PMC7220375, DOI: 10.7554/elife.54506.Peer-Reviewed Original ResearchConceptsSynaptotagmin-1Vesicular fusion machinerySingle-vesicle fusionFusion of vesiclesSNARE complexFusion machineryNeuronal exocytosisOligomer bindsRegulatory proteinsVesicle fusionSNAREpinsSynchronous fusionSynaptic vesiclesNovel mechanismVesiclesComplexinKinetic delayPrimary interfaceSynergistic roleFusionExocytosisMachineryProteinBindsMechanism
2019
Site‐specific phosphorylation of villin remodels the actin cytoskeleton to regulate Sendai viral glycoprotein‐mediated membrane fusion
Chandra S, Kumar M, Sharma N, Sarkar D. Site‐specific phosphorylation of villin remodels the actin cytoskeleton to regulate Sendai viral glycoprotein‐mediated membrane fusion. FEBS Letters 2019, 593: 1927-1943. PMID: 31183850, DOI: 10.1002/1873-3468.13477.Peer-Reviewed Original ResearchConceptsMembrane fusionVirus-host cell membrane fusionKey phosphorylation sitesQuantitative mass spectrometrySite-specific phosphorylationCell membrane fusionChinese hamster ovary cellsActin cytoskeletonPhosphorylation sitesHamster ovary cellsC-SrcTyrosine phosphorylationDependent phosphorylationCellular factorsCell fusionPhosphorylationOvary cellsVillinCritical roleVillin expressionSendai virosomesMass spectrometryFusionImportant roleCytoskeletonMitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging
Zhang M, Bener MB, Jiang Z, Wang T, Esencan E, Scott R, Horvath T, Seli E. Mitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging. Aging 2019, 11: 3919-3938. PMID: 31204316, PMCID: PMC6628992, DOI: 10.18632/aging.102024.Peer-Reviewed Original ResearchConceptsMitofusin 2Key regulatory proteinsImpaired oocyte maturationFollicle developmentMitochondrial fusionRegulatory proteinsEndoplasmic reticulumMitochondrial dysfunctionTargeted deletionOocyte maturationOocytesReproductive agingFemale subfertilityOocyte qualityOvarian follicular reserveTelomeresMitochondriaMetabolic milieuProteinReticulumDeletionFusionPhenotypeApoptosisMaturationSynaptotagmin oligomers are necessary and can be sufficient to form a Ca2+‐sensitive fusion clamp
Ramakrishnan S, Bera M, Coleman J, Krishnakumar SS, Pincet F, Rothman JE. Synaptotagmin oligomers are necessary and can be sufficient to form a Ca2+‐sensitive fusion clamp. FEBS Letters 2019, 593: 154-162. PMID: 30570144, PMCID: PMC6349546, DOI: 10.1002/1873-3468.13317.Peer-Reviewed Original Research
2018
Single-Molecule Optical Tweezers Study of Regulated SNARE Assembly
Ma L, Jiao J, Zhang Y. Single-Molecule Optical Tweezers Study of Regulated SNARE Assembly. Methods In Molecular Biology 2018, 1860: 95-114. PMID: 30317500, PMCID: PMC6441361, DOI: 10.1007/978-1-4939-8760-3_6.Peer-Reviewed Original ResearchConceptsSoluble N-ethylmaleimide-sensitive factor attachment protein receptorsSNARE assemblyHigh-resolution optical tweezersN-ethylmaleimide-sensitive factor attachment protein receptorsMembrane fusionFactor attachment protein receptorsOptical tweezers studiesNeuronal SNARE assemblyIntracellular membrane fusionAttachment protein receptorsOptical tweezersΑ-SNAPDetailed experimental protocolCellular compartmentsRegulatory proteinsProtein receptorsDifferent cellsSpatiotemporal resolutionProteinAssemblyFusion processManipulation approachTweezersExperimental approachFusion
2017
The Krebs Cycle Enzyme Isocitrate Dehydrogenase 3A Couples Mitochondrial Metabolism to Synaptic Transmission
Ugur B, Bao H, Stawarski M, Duraine LR, Zuo Z, Lin YQ, Neely GG, Macleod GT, Chapman ER, Bellen HJ. The Krebs Cycle Enzyme Isocitrate Dehydrogenase 3A Couples Mitochondrial Metabolism to Synaptic Transmission. Cell Reports 2017, 21: 3794-3806. PMID: 29281828, PMCID: PMC5747319, DOI: 10.1016/j.celrep.2017.12.005.Peer-Reviewed Original ResearchConceptsSynaptic vesiclesKrebs cycle enzymeRole of metabolitesC2 domainPlasma membraneMitochondrial metabolismSynaptic transmissionMetabolic regulationCycle enzymesSynaptic roleAlpha-ketoglutarateSyt1ΑKGNeurodegenerative disordersDependent processesRegulationMetabolitesIDH3ASynaptotagmin1Multiple levelsFliesRoleFusionVesiclesATPActing on identity: Myoblast fusion and the formation of the syncytial muscle fiber
Deng S, Azevedo M, Baylies M. Acting on identity: Myoblast fusion and the formation of the syncytial muscle fiber. Seminars In Cell And Developmental Biology 2017, 72: 45-55. PMID: 29101004, PMCID: PMC5910025, DOI: 10.1016/j.semcdb.2017.10.033.Peer-Reviewed Original ResearchMutations in Membrin/GOSR2 Reveal Stringent Secretory Pathway Demands of Dendritic Growth and Synaptic Integrity
Praschberger R, Lowe SA, Malintan NT, Giachello CNG, Patel N, Houlden H, Kullmann DM, Baines RA, Usowicz MM, Krishnakumar SS, Hodge JJL, Rothman JE, Jepson JEC. Mutations in Membrin/GOSR2 Reveal Stringent Secretory Pathway Demands of Dendritic Growth and Synaptic Integrity. Cell Reports 2017, 21: 97-109. PMID: 28978487, PMCID: PMC5640804, DOI: 10.1016/j.celrep.2017.09.004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDendritesDrosophila melanogasterFemaleFibroblastsGene ExpressionGenetic Association StudiesGolgi ApparatusHumansMaleMembrane FusionMutationMyoclonic Epilepsies, ProgressivePhenotypePrimary Cell CultureQb-SNARE ProteinsRecombinant ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSecretory PathwaySynapsesYoung AdultConceptsMembrane fusionGolgi membrane fusionProgressive myoclonus epilepsyGenotype-phenotype relationshipsPresynaptic cytoskeletonEssential proteinsDrosophila modelMembrinMutationsPathogenic mutationsSynaptic functionProteinMyoclonus epilepsyExplanatory basisCytoskeletonGrowthSynaptic integrityPathway deficitsNervous systemMulti-layered strategySnareFusionFragmentation
2016
α-SNAP Enhances SNARE Zippering by Stabilizing the SNARE Four-Helix Bundle
Ma L, Kang Y, Jiao J, Rebane AA, Keun HK, Xi Z, Qu H, Zhang Y. α-SNAP Enhances SNARE Zippering by Stabilizing the SNARE Four-Helix Bundle. Cell Reports 2016, 15: 531-539. PMID: 27068468, PMCID: PMC4838522, DOI: 10.1016/j.celrep.2016.03.050.Peer-Reviewed Original ResearchConceptsSoluble N-ethylmaleimide-sensitive factor attachment protein receptorsC-terminal domainN-terminal domainMembrane fusionLinker domainΑ-SNAPSynaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptorN-ethylmaleimide-sensitive factor attachment protein receptorsFactor attachment protein receptorsIntracellular membrane fusionAttachment protein receptorsConformational selection mechanismFour-helix bundleSNARE assemblySNARE complexProtein receptorsDynamic assemblyStepwise assemblyAssemblyDomainFusionZipperingOptical tweezersRecent experimentsReceptorsA Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion
Xu W, Nathwani B, Lin C, Wang J, Karatekin E, Pincet F, Shih W, Rothman JE. A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion. Journal Of The American Chemical Society 2016, 138: 4439-4447. PMID: 26938705, PMCID: PMC4950518, DOI: 10.1021/jacs.5b13107.Peer-Reviewed Original ResearchConceptsMembrane fusionSoluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexCore molecular machineryMembrane fusion eventsProtein receptor complexMembrane fusion processMolecular machineryDNA origami platformTarget membraneAuxiliary proteinsIntracellular communicationDocking stepSingle-event levelReceptor complexLipid mixingSmall unilamellar vesiclesLipid bilayersSnareFundamental processesVesiclesUnilamellar vesiclesTraffickingMachineryProteinFusion
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply