2025
P-623 MFF is required for mitochondria-associated ribonucleoprotein domain coalescence and mRNA translation in mammalian oocytes
Hua R, Zhuo H, Gu J, Du H, Xiao Y, Yeung W, Wang T. P-623 MFF is required for mitochondria-associated ribonucleoprotein domain coalescence and mRNA translation in mammalian oocytes. Human Reproduction 2025, 40: deaf097.929. DOI: 10.1093/humrep/deaf097.929.Peer-Reviewed Original ResearchMitochondrial fission factorMitochondrial membrane potentialRNA-binding proteinsMammalian oocytesMouse oocytesMRNA translational activityMRNA translationGerminal vesicle (GV)-stage oocytesCo-IPMitochondrial dynamicsOocyte meiotic maturationRegulation of mitochondrial dynamicsMetaphase I stageTranslational activityGV stageGV oocytesRegulation of translationJC-1 stainingATP metabolic processRegulate mRNA translationWestern blot analysisGene ontology analysisMeiotic maturationWider implicationsOocyte maturation
2024
Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer’s pathology
Kumar P, Goettemoeller A, Espinosa-Garcia C, Tobin B, Tfaily A, Nelson R, Natu A, Dammer E, Santiago J, Malepati S, Cheng L, Xiao H, Duong D, Seyfried N, Wood L, Rowan M, Rangaraju S. Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer’s pathology. Nature Communications 2024, 15: 2823. PMID: 38561349, PMCID: PMC10985119, DOI: 10.1038/s41467-024-47028-7.Peer-Reviewed Original ResearchConceptsBiotinylation of proteinsAlzheimer's diseasePre-synaptic defectsDecreased mTOR signalingAD pathogenesisAD riskCytoskeletal disruptionProteomic alterationsTranslational activityMolecular insightsMTOR signalingProteomic findingsProteomicsProteomic signatureMolecular signaturesProteinOver-representedProgressive neuropathologyAlzheimer pathologyMouse modelPV-INsParvalbumin interneuronsMitochondriaAssociated with cognitive declineFast-spiking parvalbumin interneurons
2022
Cross-kingdom expression of synthetic genetic elements promotes discovery of metabolites in the human microbiome
Patel JR, Oh J, Wang S, Crawford JM, Isaacs FJ. Cross-kingdom expression of synthetic genetic elements promotes discovery of metabolites in the human microbiome. Cell 2022, 185: 1487-1505.e14. PMID: 35366417, PMCID: PMC10619838, DOI: 10.1016/j.cell.2022.03.008.Peer-Reviewed Original ResearchConceptsSynthetic genetic elementsGenetic elementsBiosynthetic gene clusterCross-species expressionCross-species interactionsDiverse organismsGene clusterBiosynthetic machineryHeterologous expressionRegulatory regionsTRNA synthetasesBiosynthetic pathwayNative contextTranslational activityBiosynthetic capacityHuman microbiomeMetabolic capacityPositive bacteriaSmall moleculesExpressionPathwayValuable compoundsLactobacillus inersEukaryotesSynthetases
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply