2024
Loss of TGFβ-Mediated Repression of Angiopoietin-2 in Pericytes Underlies Germinal Matrix Hemorrhage Pathogenesis
Dave J, Chakraborty R, Agyemang A, Ntokou A, Saito J, Ballabh P, Martin K, Greif D. Loss of TGFβ-Mediated Repression of Angiopoietin-2 in Pericytes Underlies Germinal Matrix Hemorrhage Pathogenesis. Stroke 2024, 55: 2340-2352. PMID: 39129597, PMCID: PMC11347087, DOI: 10.1161/strokeaha.123.045248.Peer-Reviewed Original ResearchAngiopoietin-2Germinal matrix hemorrhage-intraventricular hemorrhagePerinatal lethalityEndothelial cell hyperproliferationEndothelial cellsBrain pericytesGenetic inhibitionVascular cellsBlood-brain barrier integrityBlood-brain barrier developmentBrain vascular cellsAbnormal vessel morphologyVessel morphologyProlonged survivalRegulating cross-talkMutant endothelial cellsHuman brain pericytesGerminal matrixCell hyperproliferationPhosphorylates Tie2Embryonic miceCellular sourceBarrier integrityGenetic ablationTherapeutic effectLiver Sinusoidal Endothelial Cells Contribute to Portal Hypertension Through Collagen Type IV–Driven Sinusoidal Remodeling
Gan C, Yaqoob U, Lu J, Xie M, Anwar A, Jalan-Sakrikar N, Jerez S, Sehrawat T, Navarro-Corcuera A, Kostallari E, Habash N, Cao S, Shah V. Liver Sinusoidal Endothelial Cells Contribute to Portal Hypertension Through Collagen Type IV–Driven Sinusoidal Remodeling. JCI Insight 2024, 9: e174775. PMID: 38713515, PMCID: PMC11382879, DOI: 10.1172/jci.insight.174775.Peer-Reviewed Original ResearchLiver sinusoidal endothelial cellsPortal hypertensionSinusoidal remodelingSinusoidal endothelial cellsSinusoidal resistanceComplication of liver cirrhosisEndothelial cellsSinusoidal endothelial cells in vitroEnhancer-promoter interactionsEpigenome editing approachesEndothelial cells in vitroChronic liver injuryCells in vitroMouse fibrotic liversCollagen type IVLiver cirrhosisGene mutationsExpression regulationLiver fibrosisLiver injuryEpigenetic repressionLiver diseaseCellular sourceCol4 expressionImmunofluorescence staining
2022
Cell-Free DNA Derived From Neutrophils Triggers Type 1 Interferon Signature in Neuromyelitis Optica Spectrum Disorder
Murata H, Kinoshita M, Yasumizu Y, Motooka D, Beppu S, Shiraishi N, Sugiyama Y, Kihara K, Tada S, Koda T, Konaka H, Takamatsu H, Kumanogoh A, Okuno T, Mochizuki H. Cell-Free DNA Derived From Neutrophils Triggers Type 1 Interferon Signature in Neuromyelitis Optica Spectrum Disorder. Neurology Neuroimmunology & Neuroinflammation 2022, 9: e1149. PMID: 35210295, PMCID: PMC8874356, DOI: 10.1212/nxi.0000000000001149.Peer-Reviewed Original ResearchConceptsNeuromyelitis optica spectrum disorderPeripheral blood mononuclear cellsCell-free DNAAquaporin-4 antibody-positive neuromyelitis optica spectrum disorderAntibody-positive neuromyelitis optica spectrum disorderPathogenesis of neuromyelitis optica spectrum disordersToll-like receptor 9 antagonistIFN-1IFN-1 pathwayInhibition of NETosisPeripheral immune systemOrigin of cell-free DNABlood mononuclear cellsPredominant cellular sourceIFN-1 productionType 1 interferonLL37 antimicrobial peptideWhole blood transcriptome analysisAquaporin-4Mononuclear cellsCfDNA fractionDNA methylation profilesBlood transcriptome analysisHealthy subjectsCellular source
2021
MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche
Wu N, Sun H, Zhao X, Zhang Y, Tan J, Qi Y, Wang Q, Ng M, Liu Z, He L, Niu X, Chen L, Liu Z, Li HB, Zeng YA, Roulis M, Liu D, Cheng J, Zhou B, Ng LG, Zou D, Ye Y, Flavell RA, Ginhoux F, Su B. MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche. Nature 2021, 592: 606-610. PMID: 33658717, DOI: 10.1038/s41586-021-03283-y.Peer-Reviewed Original ResearchConceptsStem cell nicheR-spondin 1Intestinal stromal cellsCell nicheDistinct stem cell nichesIntestinal stem cell nicheStromal cellsIntestinal stem cellsStromal cell populationsTissue homeostasisReactive oxygen speciesIntestinal stemMolecular mechanismsAcute intestinal damageSpecific functionsPrimary cellular sourceStem cellsColon cryptsOxygen speciesCell populationsIntestinal injuryIntestinal damageNicheCellular sourceCells
2020
Stem Cell Therapy to Improve Acute Myocardial Infarction Remodeling
Gorecka J, Dardik A. Stem Cell Therapy to Improve Acute Myocardial Infarction Remodeling. 2020, 299-329. DOI: 10.1007/978-3-030-56954-9_14.ChaptersHeart failureMyocardial infarctionClinical trialsEjection fractionCellular sourceCell therapyEnd-stage pathologyCause of deathStem cell efficacyStem cell treatmentStem cell therapyMI injuryVentricular dilationModest efficacyMyocardial recoveryHeart diseaseRemodeling changesSurgical careIschemic environmentAdult myocardiumDelivery methodsCell efficacyCell treatmentLack of standardizationTrialsA Network of Sputum MicroRNAs is Associated with Neutrophilic Airway Inflammation in Asthma
Gomez JL, Chen A, Diaz MP, Zirn N, Gupta A, Britto C, Sauler M, Yan X, Stewart E, Santerian K, Grant N, Liu Q, Fry R, Rager J, Cohn L, Alexis N, Chupp GL. A Network of Sputum MicroRNAs is Associated with Neutrophilic Airway Inflammation in Asthma. American Journal Of Respiratory And Critical Care Medicine 2020, 0: 51-64. PMID: 32255668, PMCID: PMC7328332, DOI: 10.1164/rccm.201912-2360oc.Peer-Reviewed Original ResearchConceptsEndoplasmic reticulum stressAirway inflammationNeutrophil countClinical featuresT-helper cell type 17Neutrophilic airway inflammationReticulum stressSputum of subjectsLung function impairmentHistory of hospitalizationNumber of neutrophilsPeripheral blood neutrophilsSputum of patientsMicroRNA expressionAsthma severityTh17 pathwayFunction impairmentAirway samplesMicroRNA networkBlood neutrophilsOzone exposureAsthmaSputumCellular sourceClinical phenotype
2019
Elevated Thrombospondin 2 Contributes to Delayed Wound Healing in Diabetes
Kunkemoeller B, Bancroft T, Xing H, Morris AH, Luciano AK, Wu J, Fernandez-Hernando C, Kyriakides TR. Elevated Thrombospondin 2 Contributes to Delayed Wound Healing in Diabetes. Diabetes 2019, 68: 2016-2023. PMID: 31391172, PMCID: PMC6754242, DOI: 10.2337/db18-1001.Peer-Reviewed Original ResearchConceptsThrombospondin-2TSP2 expressionDiabetic control miceWound healingEffects of hyperglycemiaImpaired wound healingUnderlying pathological mechanismsDelayed Wound HealingMajor cellular sourceBlood vessel maturationGranulation tissue formationMajor complicationsDiabetic miceControl miceTreatment strategiesDiabetesPathological mechanismsDiabetic woundsAccelerated reepithelializationCellular sourceHigh glucoseHyperglycemiaMatricellular proteinExpression contributesHexosamine pathway
2017
Biosynthesis of proresolving lipid mediators by vascular cells and tissues
Chatterjee A, Komshian S, Sansbury BE, Wu B, Mottola G, Chen M, Spite M, Conte MS. Biosynthesis of proresolving lipid mediators by vascular cells and tissues. The FASEB Journal 2017, 31: 3393-3402. PMID: 28442547, PMCID: PMC6207217, DOI: 10.1096/fj.201700082r.Peer-Reviewed Original ResearchMeSH KeywordsAntibodiesArachidonate 5-LipoxygenaseCells, CulturedCytokinesDocosahexaenoic AcidsEndothelial CellsGene Expression RegulationHumansInflammationLeukocytesLipid MetabolismMolecular StructureMyocytes, Smooth MuscleProtein TransportReceptors, Formyl PeptideReceptors, G-Protein-CoupledReceptors, LipoxinConceptsVascular smooth muscle cellsD-series resolvinsLipid mediatorsDocosahexaenoic acidVascular cellsEndothelial cellsRvD1 receptor ALX/FPR2Receptor ALX/FPR2Proresolving lipid mediatorsALX/FPR2Vascular injury responseHuman arteriesSmooth muscle cellsHuman saphenous vein endothelial cellsSaphenous vein endothelial cellsIntact human arteriesVein endothelial cellsResolvin D1Vascular healthNovel homeostatic mechanismCellular sourceInjury responseMonocyte adhesionMuscle cellsLiquid chromatography-tandem mass spectrometry
2015
Identification of novel immune and barrier genes in atopic dermatitis by means of laser capture microdissection
Esaki H, Ewald DA, Ungar B, Rozenblit M, Zheng X, Xu H, Estrada YD, Peng X, Mitsui H, Litman T, Suárez-Fariñas M, Krueger JG, Guttman-Yassky E. Identification of novel immune and barrier genes in atopic dermatitis by means of laser capture microdissection. Journal Of Allergy And Clinical Immunology 2015, 135: 153-163. PMID: 25567045, PMCID: PMC4452382, DOI: 10.1016/j.jaci.2014.10.037.Peer-Reviewed Original ResearchConceptsNonlesional AD skinLaser capture microdissectionAD transcriptomeNormal skinAD skinNonlesional skinNovel ImmuneCapture microdissectionAtopic dermatitis lesionsBarrier genesPossible cellular sourcesAtopic dermatitisHealthy volunteersEpidermal alterationsBarrier phenotypeCellular sourceImmune moleculesCellular subsetsDermatitis lesionsImmuneDermal compartmentSkinGenomic profilesPatientsMolecular signatures
2014
Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix
Akkari L, Gocheva V, Kester J, Hunter K, Quick M, Sevenich L, Wang H, Peters C, Tang L, Klimstra D, Reinheckel T, Joyce J. Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes & Development 2014, 28: 2134-2150. PMID: 25274726, PMCID: PMC4180975, DOI: 10.1101/gad.249599.114.Peer-Reviewed Original ResearchConceptsCancer cellsCathepsin ZExtracellular matrixInvasion-promoting factorCancer cell-intrinsic functionsArg-Gly-AspTumor microenvironmentCell-intrinsic functionMolecular functionsPromote tumor malignancyProcess of tumor progressionTumor-promoting functionsCellular sourceTumor-promoting factorPancreatic neuroendocrine tumorsNoncancerous cellsNeuroendocrine tumorsCTSZTumor progressionComplexity of interactionsTumor invasionTumor proliferationTumor malignancyCellsTumor
2012
Epithelial Wnt Ligand Secretion Is Required for Adult Hair Follicle Growth and Regeneration
Myung PS, Takeo M, Ito M, Atit RP. Epithelial Wnt Ligand Secretion Is Required for Adult Hair Follicle Growth and Regeneration. Journal Of Investigative Dermatology 2012, 133: 31-41. PMID: 22810306, PMCID: PMC3479363, DOI: 10.1038/jid.2012.230.Peer-Reviewed Original ResearchConceptsWnt ligand secretionHair follicle epitheliumFollicle growthHair follicle growthWnt ligandsEpithelial Wnt ligandsHair cycle arrestFollicular epitheliumLigand secretionFollicle epitheliumWnt/β-catenin activationΒ-cateninAnagen inductionWnt/β-cateninStem cell markersΒ-catenin activationPotential cellular targetsHair follicle stem cellsCellular sourceCell markersHair disordersFollicle stem cellsHair folliclesEpitheliumHair follicle regenerationReprogramming human somatic cells into induced pluripotent stem cells (iPSCs) using retroviral vector with GFP.
Kim KY, Hysolli E, Park IH. Reprogramming human somatic cells into induced pluripotent stem cells (iPSCs) using retroviral vector with GFP. Journal Of Visualized Experiments 2012 PMID: 22491226, PMCID: PMC3466658, DOI: 10.3791/3804.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cellsInduced pluripotent stem cellsHuman somatic cellsHuman induced pluripotent stem cellsPluripotent stem cellsSomatic cellsIPSC coloniesStem cellsESC culture conditionsEmbryonic stem cellsPluripotency genesTranscription factorsRetroviral transgenesEctopic expressionGFP fluorescenceRetroviral vectorsHuman fibroblast cellsFibroblast cellsGFPCulture conditionsCellsAutologous cellsCellular sourceColoniesSurface markers
2011
Cell subset prediction for blood genomic studies
Bolen CR, Uduman M, Kleinstein SH. Cell subset prediction for blood genomic studies. BMC Bioinformatics 2011, 12: 258. PMID: 21702940, PMCID: PMC3213685, DOI: 10.1186/1471-2105-12-258.Peer-Reviewed Original ResearchConceptsPeripheral blood mononuclear cellsTotal peripheral blood mononuclear cellsGene signatureSubset-specific genesBlood mononuclear cellsPatient blood samplesPersonalized treatment decisionsSpecific cell subsetsHCV patientsPBMC subsetsNK cellsStandard therapyCell subsetsMononuclear cellsT cellsTreatment decisionsTherapy responseBlood samplesB cellsMyeloid cellsCellular sourceTranscriptional profilingDisease mechanismsGene expression profilesCells
2010
Immunohistochemical localization of transforming growth factor β-1 and its relationship with collagen expression in advanced liver fibrosis due to biliary atresia
Farrington C, Novak D, Liu C, Haafiz A. Immunohistochemical localization of transforming growth factor β-1 and its relationship with collagen expression in advanced liver fibrosis due to biliary atresia. Clinical And Experimental Gastroenterology 2010, 3: 185-191. PMID: 21694865, PMCID: PMC3108674, DOI: 10.2147/ceg.s14220.Peer-Reviewed Original ResearchAdvanced biliary atresiaBiliary atresiaTGFβ1 expressionFibrous septaGrowth factor beta 1Protein expressionAdvanced liver fibrosisSmooth muscle actinTGFβ1 protein expressionGrowth factor βLiver transplantationCommon indicationHepatic fibrosisLiver fibrosisCenter of nodulesLiver specimensΑ-SMAParacrine mechanismsCoimmunofluorescence stainingTrichrome stainingImmunohistochemical localizationMuscle actinCellular sourceImmunofluorescence techniqueMyofibroblasts
2009
IL-10 Signaling Blockade Controls Murine West Nile Virus Infection
Bai F, Town T, Qian F, Wang P, Kamanaka M, Connolly TM, Gate D, Montgomery RR, Flavell RA, Fikrig E. IL-10 Signaling Blockade Controls Murine West Nile Virus Infection. PLOS Pathogens 2009, 5: e1000610. PMID: 19816558, PMCID: PMC2749443, DOI: 10.1371/journal.ppat.1000610.Peer-Reviewed Original ResearchConceptsIL-10 signalingIL-10WNV infectionWest Nile virusIL-10-deficient miceWest Nile virus infectionImportant cellular sourceSignificant human morbidityRNA flavivirusWNV pathogenesisInterleukin-10Antiviral cytokinesEtiologic rolePharmacologic blockadeDeficient miceT cellsVirus infectionPharmacologic meansTherapeutic strategiesViral infectionCellular sourceInfectionHuman morbidityNile virusMice
2007
Tumor Necrosis Factor
Pober J. Tumor Necrosis Factor. 2007, 261-265. DOI: 10.1017/cbo9780511546198.032.Peer-Reviewed Original ResearchHemorrhagic necrosisNecrosis factorMediator of cachexiaMediators of inflammationTumor necrosis factorPrimary cellular sourceAdaptive immune systemTNF-like moleculeTime of cloningMajor histocompatibility complexPeyer's patchesEndogenous mediatorsT lymphocytesMast cellsParasitic infectionsTNFBacterial productsExperimental tumorsImmune systemMononuclear phagocytesCellular sourceSmall intestineHistocompatibility complexTNF geneRelated receptorsThe Role of Inflammation and Immunity in the Pathogenesis of Liver Fibrosis
Mehal W, Friedman S. The Role of Inflammation and Immunity in the Pathogenesis of Liver Fibrosis. 2007, 111-121. DOI: 10.1007/978-1-59745-518-3_10.Peer-Reviewed Original ResearchHepatic fibrosisChronic liver diseaseRole of inflammationWound healing responseViral hepatitisLiver diseaseFibrosis progressionAutoimmune diseasesChronic injuryLiver fibrosisCellular sourceFibrosisExtracellular matrixDiseaseRealistic expectationsUbiquitous responseMajor advancesTranscriptional eventsHepatitisInflammationPatientsPathophysiologyPathogenesisInjuryLiver
1985
Immunolocalization of type IV collagen and laminin in nonbasement membrane structures of murine corneal stroma. A light and electron microscopic study.
Pratt B, Madri J. Immunolocalization of type IV collagen and laminin in nonbasement membrane structures of murine corneal stroma. A light and electron microscopic study. Laboratory Investigation 1985, 52: 650-6. PMID: 3892156.Peer-Reviewed Original ResearchConceptsElectron microscopic immunolocalizationMicrofibril bundlesInterstitial collagen types IType IV collagenPossible functionsExtracellular matrixImmunofluorescent localizationMembrane structureIV collagenCollagen type IType IType V collagenOxytalan microfibrilsImmunolocalizationCellular sourceMicrofibrilsLaminin
1984
The extent of a eukaryotic tRNA gene. 5‘- and 3‘-flanking sequence dependence for transcription and stable complex formation.
Schaack J, Sharp S, Dingermann T, Burke DJ, Cooley L, Söll D. The extent of a eukaryotic tRNA gene. 5‘- and 3‘-flanking sequence dependence for transcription and stable complex formation. Journal Of Biological Chemistry 1984, 259: 1461-1467. PMID: 6693417, DOI: 10.1016/s0021-9258(17)43429-6.Peer-Reviewed Original ResearchConceptsStable complex formationBase pairsDrosophila Kc cell extractSequence requirementsCell extractsEukaryotic tRNA genesStable transcription complexesHeLa cell extractsTRNA genesComplex formationTranscription complexArg genesEfficient transcriptionTranscription assaysTranscription propertiesCell-free extractsTranscriptionHomologous systemGenesSequenceSequence dependenceCellular sourceExtractAssaysPairs
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply