2023
Investigating rutin as a potential transforming growth factor‐β type I receptor antagonist for the inhibition of bleomycin‐induced lung fibrosis
Karunarathne W, Lee K, Choi Y, Kang C, Lee M, Kim S, Kim G. Investigating rutin as a potential transforming growth factor‐β type I receptor antagonist for the inhibition of bleomycin‐induced lung fibrosis. BioFactors 2023, 50: 477-492. PMID: 38006284, DOI: 10.1002/biof.2020.Peer-Reviewed Original ResearchIdiopathic pulmonary fibrosisEpithelial-mesenchymal transitionPotential of rutinLung fibrosisType I receptor antagonistChronic lung conditionsPotential therapeutic optionTGF-β type I receptorFibrotic signaling pathwaysInhibition of bleomycinSmooth muscle actinNon-toxic concentrationsType I receptorPulmonary fibrosisCancer-related diseasesTherapeutic optionsReceptor antagonistLung conditionsLung fibroblast cellsFibrosisMuscle actinEMT processType 1ECM-related genesTGF
2020
Force and phosphate release from Arp2/3 complex promote dissociation of actin filament branches
Pandit NG, Cao W, Bibeau J, Johnson-Chavarria EM, Taylor EW, Pollard TD, De La Cruz EM. Force and phosphate release from Arp2/3 complex promote dissociation of actin filament branches. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 13519-13528. PMID: 32461373, PMCID: PMC7306818, DOI: 10.1073/pnas.1911183117.Peer-Reviewed Original ResearchConceptsActin filament branchesArp2/3 complexMother filamentFilament branchesTotal internal reflection fluorescence microscopyEssential cellular functionsMechanical forcesActin filament networkReflection fluorescence microscopyCellular functionsActin networkCell motilityComplex generatesActin filamentsArp2/3Filament networkFluorescence microscopyState 1Branch junctionsState 2FilamentsComplexesPhosphate releaseMuscle actinADPRegulatory T-cell Depletion Alters the Tumor Microenvironment and Accelerates Pancreatic Carcinogenesis
Zhang Y, Lazarus J, Steele NG, Yan W, Lee HJ, Nwosu ZC, Halbrook CJ, Menjivar RE, Kemp SB, Sirihorachai VR, Velez-Delgado A, Donahue K, Carpenter ES, Brown KL, Irizarry-Negron V, Nevison AC, Vinta A, Anderson MA, Crawford HC, Lyssiotis CA, Frankel TL, Bednar F, di Magliano M. Regulatory T-cell Depletion Alters the Tumor Microenvironment and Accelerates Pancreatic Carcinogenesis. Cancer Discovery 2020, 10: 422-439. PMID: 31911451, PMCID: PMC7224338, DOI: 10.1158/2159-8290.cd-19-0958.Peer-Reviewed Original ResearchConceptsPancreatic cancerTreg depletionPancreatic carcinogenesisRegulatory T cellsT cell responsesMyeloid cell recruitmentMouse pancreatic cancerNew therapeutic approachesSmooth muscle actinPromotion of carcinogenesisImmune suppressionImmunosuppressive microenvironmentReceptors CCR1T cellsTherapeutic approachesCell recruitmentMouse modelMyeloid cellsMuscle actinRelated commentaryTumor progressionTregsTumor microenvironmentCancerFibroblast subsetsBilateral Signet-ring Stromal Tumor of the Ovary: A Case Report With Next-generation Sequencing Analysis and FOXL2 Mutation Testing
Chen PH, Hui P, Buza N. Bilateral Signet-ring Stromal Tumor of the Ovary: A Case Report With Next-generation Sequencing Analysis and FOXL2 Mutation Testing. International Journal Of Gynecological Pathology 2020, 39: 193-198. PMID: 30676431, DOI: 10.1097/pgp.0000000000000579.Peer-Reviewed Case Reports and Technical NotesConceptsSignet-ring stromal tumorStromal tumorsNext-generation sequencing analysisBilateral solid ovarian tumorsBilateral ovarian massesFOXL2 mutation testingSolid ovarian tumorSignet ring cell morphologySmooth muscle actinUnderlying genetic abnormalitiesPCR-Sanger sequencingNuclear beta-catenin expressionHandful of casesHeterogenous pathogenesisAbdominal distentionRectal bleedingTotal hysterectomyStromal neoplasmsOvarian massesOvarian tumorsCase reportBeta-catenin expressionSequencing analysisMuscle actinTumors
2019
Targeting Fibrotic Signaling: A Review of Current Literature and Identification of Future Therapeutic Targets to Improve Wound Healing.
Hetzler PT, Dash BC, Guo S, Hsia HC. Targeting Fibrotic Signaling: A Review of Current Literature and Identification of Future Therapeutic Targets to Improve Wound Healing. Annals Of Plastic Surgery 2019, 83: e92-e95. PMID: 31246672, PMCID: PMC6851445, DOI: 10.1097/sap.0000000000001955.Peer-Reviewed Original ResearchConceptsTherapeutic targetAberrant wound healing processAppropriate physiologic responseMorbid disease processSurvival of myofibroblastsWound healingFibrotic signaling pathwaysTranscription factor/serum response factor (MRTF/SRF) pathwayFuture therapeutic targetsSmooth muscle actinFuture translational researchCurrent literatureFibrotic signalingTherapeutic optionsFibrotic lesionsTissue injuryWound healing processDisease processPhysiologic responsesSerum response factor pathwayMuscle actinFactor pathwayExcessive responseFibrosisTranslational researchHigh-throughput screening discovers antifibrotic properties of haloperidol by hindering myofibroblast activation
Rehman M, Vodret S, Braga L, Guarnaccia C, Celsi F, Rossetti G, Martinelli V, Battini T, Long C, Vukusic K, Kocijan T, Collesi C, Ring N, Skoko N, Giacca M, Del Sal G, Confalonieri M, Raspa M, Marcello A, Myers MP, Crovella S, Carloni P, Zacchigna S. High-throughput screening discovers antifibrotic properties of haloperidol by hindering myofibroblast activation. JCI Insight 2019, 4: e123987. PMID: 30996132, PMCID: PMC6538355, DOI: 10.1172/jci.insight.123987.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsCalciumCell DifferentiationCells, CulturedDisease Models, AnimalDrug RepositioningEndoplasmic Reticulum StressFibrosisHaloperidolHumansIntravital MicroscopyLungMiceMyocardiumMyofibroblastsOptical ImagingPrimary Cell CultureReceptor, Notch1Receptors, sigmaRNA InterferenceRNA, Small InterferingSignal TransductionConceptsMyofibroblast activationSigma receptor 1Smooth muscle actinDifferent animal modelsTransforming Growth FactorDiscovery of haloperidolTumor-associated fibrosisMechanism of actionEndoplasmic reticulum stress responseFibrotic burdenAntifibrotic effectsAntifibrotic propertiesCommon antipsychotic drugsAntipsychotic drugsFibrotic processIntracellular calciumReticulum stress responseAnimal modelsMuscle actinFibrotic conditionsHaloperidolReceptor 1Growth factorContractile proteinsTherapeutic solutionsTargeting of dermal myofibroblasts through death receptor 5 arrests fibrosis in mouse models of scleroderma
Park J, Oh Y, Park Y, Park O, Yang H, Slania S, Hummers L, Shah A, An H, Jang J, Horton M, Shin J, Dietz H, Song E, Na D, Park E, Kim K, Lee K, Roschke V, Hanes J, Pomper M, Lee S. Targeting of dermal myofibroblasts through death receptor 5 arrests fibrosis in mouse models of scleroderma. Nature Communications 2019, 10: 1128. PMID: 30850660, PMCID: PMC6408468, DOI: 10.1038/s41467-019-09101-4.Peer-Reviewed Original ResearchMeSH KeywordsActinsAdultAgedAnimalsApoptosisCell DifferentiationCollagenDermisDisease Models, AnimalFemaleFibroblastsFibrosisGene Expression RegulationHumansMaleMiceMiddle AgedMolecular Targeted TherapyMyofibroblastsProtein EngineeringReceptors, TNF-Related Apoptosis-Inducing LigandScleroderma, SystemicSignal TransductionTNF-Related Apoptosis-Inducing LigandConceptsMouse modelAutoimmune rheumatic disordersΑ-smooth muscle actinDeath receptorsAnti-fibrotic effectsMajor therapeutic targetNormal skin architectureDeath receptor 5Upregulated DR5Cognate death receptorsApoptosis-inducing ligandScleroderma progressionRheumatic disordersSevere fibrosisSkin fibrosisViable therapyReceptor 5Therapeutic targetTRAIL pathwayResident fibroblastsSclerodermaFibrogenic componentsFibrosisMuscle actinMyofibroblasts
2016
Implantable tissue-engineered blood vessels from human induced pluripotent stem cells
Gui L, Dash BC, Luo J, Qin L, Zhao L, Yamamoto K, Hashimoto T, Wu H, Dardik A, Tellides G, Niklason LE, Qyang Y. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 2016, 102: 120-129. PMID: 27336184, PMCID: PMC4939127, DOI: 10.1016/j.biomaterials.2016.06.010.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsVascular diseaseBlood vesselsAlpha-smooth muscle actinSmooth muscle myosin heavy chainActive vascular remodelingSmooth muscle cellsMuscle myosin heavy chainTissue-engineered blood vesselsStem cellsAbundant collagenous matrixPluripotent stem cellsInterposition graftAllogeneic graftsVascular remodelingΑ-SMANude ratsMuscle actinMyosin heavy chainClinical useMuscle cellsFunctional vascular smooth muscle cellsPatientsFunctional tissue-engineered blood vesselGraft
2015
Regional Blood Flow in the Normal and Ischemic Brain Is Controlled by Arteriolar Smooth Muscle Cell Contractility and Not by Capillary Pericytes
Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J. Regional Blood Flow in the Normal and Ischemic Brain Is Controlled by Arteriolar Smooth Muscle Cell Contractility and Not by Capillary Pericytes. Neuron 2015, 87: 95-110. PMID: 26119027, PMCID: PMC4487786, DOI: 10.1016/j.neuron.2015.06.001.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsCerebral blood flowBlood flowCapillary pericytesArteriolar smooth muscle cellsBlood flow regulationRegional blood flowNormal brain functionSmooth muscle actinSmooth muscle cell contractilityMuscle cell contractilityPericyte constrictionIschemic brainBrain ischemiaMicrovascular occlusionNeurovascular couplingMicrovascular diametersWhisker stimulationMuscle actinMuscle cellsBrain functionMajor causePathological conditionsPericytesVascular treeDevelopment of Small Diameter Nanofiber Tissue Engineered Arterial Grafts
Kurobe H, Maxfield MW, Tara S, Rocco KA, Bagi PS, Yi T, Udelsman B, Zhuang ZW, Cleary M, Iwakiri Y, Breuer CK, Shinoka T. Development of Small Diameter Nanofiber Tissue Engineered Arterial Grafts. PLOS ONE 2015, 10: e0120328. PMID: 25830942, PMCID: PMC4382213, DOI: 10.1371/journal.pone.0120328.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsSmall-diameter arteriesSynthetic graftsDiameter arteriesSurvival of miceLarge-sized arteriesF4/80-positive macrophagesInner luminal diameterMatrix metalloproteinases 2Smooth muscle actinAneurysmal dilatationGraft stenosisSurgical repairPatency ratesSham groupArterial graftsSized arteriesVascular diseaseSham operationBg miceLuminal diameterDoppler ultrasoundHistologic analysisInterposition conduitsMuscle actinEstablishment and Characterization of Rat Portal Myofibroblast Cell Lines
Fausther M, Goree JR, Lavoie ÉG, Graham AL, Sévigny J, Dranoff JA. Establishment and Characterization of Rat Portal Myofibroblast Cell Lines. PLOS ONE 2015, 10: e0121161. PMID: 25822334, PMCID: PMC4378927, DOI: 10.1371/journal.pone.0121161.Peer-Reviewed Original ResearchConceptsHepatic stellate cellsPortal fibroblastsMyofibroblast cell lineLiver fibrosisCell linesAlpha 1Alpha-smooth muscle actinMyofibroblast marker alpha-smooth muscle actinScar-forming myofibroblastsSmooth muscle actinMesenchymal cell markersNTPDase2/CD39L1Lecithin retinol acyltransferaseStellate cellsCollagen alpha 1Cholangiocyte proliferationMetalloproteinases-1Muscle actinTissue inhibitorAdult rat liverCell markersCholangiocarcinoma cellsCulture activationRetinol acyltransferaseFunctional studies
2014
Let-7d microRNA affects mesenchymal phenotypic properties of lung fibroblasts
Huleihel L, Ben-Yehudah A, Milosevic J, Yu G, Pandit K, Sakamoto K, Yousef H, LeJeune M, Coon TA, Redinger CJ, Chensny L, Manor E, Schatten G, Kaminski N. Let-7d microRNA affects mesenchymal phenotypic properties of lung fibroblasts. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2014, 306: l534-l542. PMID: 24441869, PMCID: PMC3949080, DOI: 10.1152/ajplung.00149.2013.Peer-Reviewed Original ResearchMeSH KeywordsActinsCadherinsCalcium-Binding ProteinsCell MovementCell ProliferationCells, CulturedEpithelial-Mesenchymal TransitionFibroblastsFibronectinsHMGA2 ProteinHMGB2 ProteinHumansIdiopathic Pulmonary FibrosisKeratin-19LungMicroRNAsMyofibroblastsPulmonary AlveoliPulmonary FibrosisS100 Calcium-Binding Protein A4Snail Family Transcription FactorsTranscription FactorsTransfectionTransforming Growth Factor betaWound HealingZonula Occludens-1 ProteinConceptsLet-7dFibroblast-specific protein-1Mesenchymal marker αProtein 1Tight junction protein 1Smooth muscle actinMicroRNA Let-7dLung fibrosisProliferation of fibroblastsFibrotic processPrimary fibroblastsEffect of transfectionMuscle actinMesenchymal transitionLung fibroblastsFibroblast responsivenessMesenchymal propertiesKeratin 19Protein expressionEpithelial cellsWound healingN-cadherinProtein inductionReduced motilityTGF
2013
Small-Diameter Vascular Graft Engineered Using Human Embryonic Stem Cell-Derived Mesenchymal Cells
Sundaram S, Echter A, Sivarapatna A, Qiu C, Niklason L. Small-Diameter Vascular Graft Engineered Using Human Embryonic Stem Cell-Derived Mesenchymal Cells. Tissue Engineering Part A 2013, 20: 740-750. PMID: 24125588, PMCID: PMC3926168, DOI: 10.1089/ten.tea.2012.0738.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cellsHuman embryonic stem cell-derived mesenchymal cellsSmooth muscle cellsSMC marker expressionMesenchymal cellsEmbryonic stem cellsMarkers of cartilageLineage commitmentNew cell sourceGrowth factor betaStem cellsDifferentiation capabilityCell populationsNative counterpartsMuscle cellsHuman vessel wallStringent analysisFactor betaCell sourceCellsMarker expressionSmooth muscle actinMuscle actinVascular constructsCell sourcing
2010
Immunohistochemical localization of transforming growth factor β-1 and its relationship with collagen expression in advanced liver fibrosis due to biliary atresia
Farrington C, Novak D, Liu C, Haafiz A. Immunohistochemical localization of transforming growth factor β-1 and its relationship with collagen expression in advanced liver fibrosis due to biliary atresia. Clinical And Experimental Gastroenterology 2010, 3: 185-191. PMID: 21694865, PMCID: PMC3108674, DOI: 10.2147/ceg.s14220.Peer-Reviewed Original ResearchAdvanced biliary atresiaBiliary atresiaTGFβ1 expressionFibrous septaGrowth factor beta 1Protein expressionAdvanced liver fibrosisSmooth muscle actinTGFβ1 protein expressionGrowth factor βLiver transplantationCommon indicationHepatic fibrosisLiver fibrosisCenter of nodulesLiver specimensΑ-SMAParacrine mechanismsCoimmunofluorescence stainingTrichrome stainingImmunohistochemical localizationMuscle actinCellular sourceImmunofluorescence techniqueMyofibroblasts
2008
Carbon Monoxide Modulates α–Smooth Muscle Actin and Small Proline Rich-1a Expression in Fibrosis
Zheng L, Zhou Z, Lin L, Alber S, Watkins S, Kaminski N, Choi AM, Morse D. Carbon Monoxide Modulates α–Smooth Muscle Actin and Small Proline Rich-1a Expression in Fibrosis. American Journal Of Respiratory Cell And Molecular Biology 2008, 41: 85-92. PMID: 19097987, PMCID: PMC2701963, DOI: 10.1165/rcmb.2007-0401oc.Peer-Reviewed Original ResearchMeSH KeywordsActinsAdministration, InhalationAnimalsBleomycinBone DevelopmentCarbon MonoxideCell DeathCell MovementCells, CulturedCornified Envelope Proline-Rich ProteinsDisease Models, AnimalDose-Response Relationship, DrugExtracellular Signal-Regulated MAP KinasesFibroblastsGene Expression ProfilingLungMaleMAP Kinase Signaling SystemMiceMice, Inbred C57BLMuscle DevelopmentOrganometallic CompoundsPulmonary FibrosisTime FactorsTransforming Growth Factor beta1UbiquitinationConceptsExtracellular signal-regulated kinase (ERK) pathwayCategories of genesSignal-regulated kinase pathwayNovel transcriptional targetMuscular system developmentGene expression profilingMurine bleomycin modelStress-inducible enzymeTranscriptional targetsAlpha-smooth muscle actin expressionExpression profilingKinase pathwayMuscle actin expressionΑ-smooth muscle actinEffects of COActin expressionGrowth factorHeme oxygenaseExpressionMuscle actinActive moleculesGenesOxygenaseProteinActinErbB3 is required for ductal morphogenesis in the mouse mammary gland
Jackson-Fisher AJ, Bellinger G, Breindel JL, Tavassoli FA, Booth CJ, Duong JK, Stern DF. ErbB3 is required for ductal morphogenesis in the mouse mammary gland. Breast Cancer Research 2008, 10: r96. PMID: 19019207, PMCID: PMC2656891, DOI: 10.1186/bcr2198.Peer-Reviewed Original ResearchConceptsTerminal end budsMammary fat padEnd budsMammary budBreast cancerFat padDuctal outgrowthMammary glandHER2/neuHuman breast cancerSmooth muscle actinNormal mammary glandSections of glandsMammary ductal treeMouse mammary gland developmentMammary gland developmentErbB3 functionMouse mammary glandRole of ErbB3Lobuloalveolar developmentEpithelial areaErbB2/HER2/NeuPredictive valueMuscle actinTherapeutic resistanceExpression of CD56 and WT1 in Ovarian Stroma and Ovarian Stromal Tumors
He H, Luthringer DJ, Hui P, Lau SK, Weiss LM, Chu PG. Expression of CD56 and WT1 in Ovarian Stroma and Ovarian Stromal Tumors. The American Journal Of Surgical Pathology 2008, 32: 884-890. PMID: 18425046, DOI: 10.1097/pas.0b013e3181609d59.Peer-Reviewed Original ResearchConceptsSpindle cell sarcomaSpindle cell tumorsOvarian stromal cellsUterine smooth muscle tumorsExpression of CD56Endometrial stromal tumorsOvarian fibromaSmooth muscle tumorsCell sarcomaCell tumorsOvarian cellular fibromasSmooth muscle actinStromal tumorsOvarian stromaProgesterone receptorNormal ovariesStromal cellsOvarian fibrothecomaOvarian leiomyomaMuscle tumorsCellular fibromaMuscle actinOvarian stromal originOvarian stromal tumorsEndometrial stromal cellsUse of organotypic coculture to study keloid biology
Butler PD, Ly DP, Longaker MT, Yang GP. Use of organotypic coculture to study keloid biology. The American Journal Of Surgery 2008, 195: 144-148. PMID: 18070722, PMCID: PMC2245861, DOI: 10.1016/j.amjsurg.2007.10.003.Peer-Reviewed Original ResearchConceptsNormal human keratinocytesAnimal modelsKeloid formationOrganotypic skinKeloid biologyDermal contracturesDefinitive therapyFetal calf serumOrganotypic skin modelsCollagen depositionDermal thicknessMuscle actinOrganotypic skin culturesSkin culturesCollagen stainingPathologic scarsOrganotypic coculturesCollagen productionHuman keratinocytesSkinContractureCalf serumDermal layerDermal structuresEagle's medium
2007
Transforming growth factor‐β and substrate stiffness regulate portal fibroblast activation in culture
Li Z, Dranoff JA, Chan EP, Uemura M, Sévigny J, Wells RG. Transforming growth factor‐β and substrate stiffness regulate portal fibroblast activation in culture. Hepatology 2007, 46: 1246-1256. PMID: 17625791, DOI: 10.1002/hep.21792.Peer-Reviewed Original ResearchConceptsHepatic stellate cellsPortal fibroblastsStellate cellsMyofibroblastic differentiationTGF-beta receptor kinase inhibitorGrowth factorAlpha-smooth muscle actinAlpha-smooth muscle actin expressionPlatelet-derived growth factorMuscle actin expressionReceptor kinase inhibitorBiliary fibrosisRat liver tissueFibroblast activationFibrogenic cellsMuscle actinLiver tissueMyofibroblastic phenotypeActin expressionFibroblast differentiationKinase inhibitorsDesminMyofibroblastsFibroblastsCells
2006
Pacemaker activity in the upper urinary tract
Weiss RM, Tamarkin FJ, Wheeler MA. Pacemaker activity in the upper urinary tract. Journal Of Smooth Muscle Research 2006, 42: 103. PMID: 17099294, DOI: 10.1540/jsmr.42.103.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsTypical smooth muscle cellsMuscle cellsUreteral peristalsisCapsaicin-sensitive sensory afferentsAlpha-smooth muscle actinNormal ureteral peristalsisUpper urinary tractUreteral peristaltic activityUrinary collecting systemTyrosine kinase receptorsSensory afferentsUrinary tractEndogenous releasePeristaltic activityPacemaker activityMuscle actinAction potentialsPacemaker siteC-kitPacemaker cellsProximal portionCollecting systemSparse immunoreactivityElectrical activity
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply