Frequency modulation increases the specificity of time-resolved connectivity: A resting-state fMRI study
Faghiri A, Yang K, Faria A, Ishizuka K, Sawa A, Adali T, Calhoun V. Frequency modulation increases the specificity of time-resolved connectivity: A resting-state fMRI study. Network Neuroscience 2024, 8: 734-761. PMID: 39355435, PMCID: PMC11349031, DOI: 10.1162/netn_a_00372.Peer-Reviewed Original ResearchSliding window Pearson correlationTime-resolved networksSingle sideband modulationTime-resolved connectivityResting-state fMRI studiesSideband modulationFunctional magnetic resonance imagingFunctional network connectivityResting-state functional magnetic resonance imagingActivity time seriesTypical controlsFrequency modulationLow-frequency informationStateEpisode of psychosisNetwork connectivityHuman brainSub-corticalSuperior performanceFMRI studyCortical regionsLocal-structure-preservation and redundancy-removal-based feature selection method and its application to the identification of biomarkers for schizophrenia
Xing Y, Pearlson G, Kochunov P, Calhoun V, Du Y. Local-structure-preservation and redundancy-removal-based feature selection method and its application to the identification of biomarkers for schizophrenia. NeuroImage 2024, 299: 120839. PMID: 39251116, PMCID: PMC11491165, DOI: 10.1016/j.neuroimage.2024.120839.Peer-Reviewed Original ResearchConceptsSelection methodClassification accuracy gainsGraph-based regularizationHigh-dimensional dataFeature selection methodLocal structural informationSparse regularizationAblation studiesFeature subsetPublic datasetsFeature selectionClassification accuracyExperimental evaluationAccuracy gainsSelection techniquesNetwork connectivityData transformationSuperior performanceDatasetConvergence analysisStructural informationClassificationRegularizationFeaturesDisorder prediction