2024
Network state dynamics underpin basal craving in a transdiagnostic population
Ye J, Garrison K, Lacadie C, Potenza M, Sinha R, Goldfarb E, Scheinost D. Network state dynamics underpin basal craving in a transdiagnostic population. Molecular Psychiatry 2024, 1-10. PMID: 39183336, DOI: 10.1038/s41380-024-02708-0.Peer-Reviewed Original ResearchConnectome-based predictive modelingBrain responsesRegulation of affective statesSample of healthy controlsTransdiagnostic populationTransdiagnostic sampleHigher cravingMotivational stateCravingFMRI methodsAffective statesScan runsExperimental stimuliNetwork engagementBrain dynamicsClinical implicationsHealthy controlsBrainIndividual variationState dynamicsCharacterize individualsReplication datasetPsychopathologyFMRIEngagementThe tip of the iceberg: A call to embrace anti-localizationism in human neuroscience research
Noble S, Curtiss J, Pessoa L, Scheinost D. The tip of the iceberg: A call to embrace anti-localizationism in human neuroscience research. Imaging Neuroscience 2024, 2: 1-10. DOI: 10.1162/imag_a_00138.Peer-Reviewed Original Research
2023
Network controllability of structural connectomes in the neonatal brain
Sun H, Jiang R, Dai W, Dufford A, Noble S, Spann M, Gu S, Scheinost D. Network controllability of structural connectomes in the neonatal brain. Nature Communications 2023, 14: 5820. PMID: 37726267, PMCID: PMC10509217, DOI: 10.1038/s41467-023-41499-w.Peer-Reviewed Original Research
2022
A cognitive state transformation model for task-general and task-specific subsystems of the brain connectome
Yoo K, Rosenberg MD, Kwon YH, Scheinost D, Constable RT, Chun MM. A cognitive state transformation model for task-general and task-specific subsystems of the brain connectome. NeuroImage 2022, 257: 119279. PMID: 35577026, PMCID: PMC9307138, DOI: 10.1016/j.neuroimage.2022.119279.Peer-Reviewed Original ResearchConceptsDifferent cognitive statesCognitive stateWhole-brain functional connectomeRelevant individual differencesFunctional reorganizationFunctional magnetic resonanceResting-state dataSpecific task goalsTask-induced modulationHuman Connectome ProjectContext-dependent changesIndividual differencesTask goalsContextual demandsBehavioral predictionsCognitive behaviorFunctional connectomeConnectome ProjectBrain connectomeHuman brainBrain functional reorganizationC2C modelConnectomeBrainMemoryLarge-scale differences in functional organization of left- and right-handed individuals using whole-brain, data-driven analysis of connectivity
Tejavibulya L, Peterson H, Greene A, Gao S, Rolison M, Noble S, Scheinost D. Large-scale differences in functional organization of left- and right-handed individuals using whole-brain, data-driven analysis of connectivity. NeuroImage 2022, 252: 119040. PMID: 35272202, PMCID: PMC9013515, DOI: 10.1016/j.neuroimage.2022.119040.Peer-Reviewed Original ResearchConceptsHanded individualsFunctional connectivityLanguage areasWhole-brain functional connectivityRight-handed individualsFunctional organizationWhole-brain levelIndividual differencesHandedness differencesHandedness effectsFunctional connectomeBrain levelsSomatosensory cortexNetworks of interestWhole brainSex differencesBrainConnectomeIndividualsData-driven analysisConnectivityDistinct patternsLateralizationDifferencesSimilar amounts
2020
Identification of a brain fingerprint for overweight and obesity
Farruggia MC, van Kooten MJ, Perszyk EE, Burke MV, Scheinost D, Constable RT, Small DM. Identification of a brain fingerprint for overweight and obesity. Physiology & Behavior 2020, 222: 112940. PMID: 32417645, PMCID: PMC7321926, DOI: 10.1016/j.physbeh.2020.112940.Peer-Reviewed Original ResearchConceptsPercent body fatWaist circumferenceBody fatWhole-brain functional connectivityBrain network patternsGlucose toleranceBlood insulinObesityOverweightPathophysiological phenotypesFunctional connectivity networksFunctional connectivityMilkshake consumptionBrain correlatesBrain fingerprintsBMIAdiposityBrainCircumferenceConnectivity networksFatDiabetesPathophysiologyCentral roleInsulin
2019
There is no single functional atlas even for a single individual: Functional parcel definitions change with task
Salehi M, Greene AS, Karbasi A, Shen X, Scheinost D, Constable RT. There is no single functional atlas even for a single individual: Functional parcel definitions change with task. NeuroImage 2019, 208: 116366. PMID: 31740342, DOI: 10.1016/j.neuroimage.2019.116366.Peer-Reviewed Original ResearchIndividualized functional networks reconfigure with cognitive state
Salehi M, Karbasi A, Barron DS, Scheinost D, Constable RT. Individualized functional networks reconfigure with cognitive state. NeuroImage 2019, 206: 116233. PMID: 31574322, PMCID: PMC7216521, DOI: 10.1016/j.neuroimage.2019.116233.Peer-Reviewed Original ResearchConceptsCognitive stateFunctional networksMultiple cognitive statesFunctional network organizationFunctional organizationBrain functional networksTask demandsFMRI dataSimilar tasksParcellation approachHuman brainNetwork organizationExtensive evidenceMultiple subjectsBrainNetwork membershipTaskOrganizationSubjectsParcellationSuch reconfigurationMeasuresMembershipFindingsSuch definitionsThe individual functional connectome is unique and stable over months to years
Horien C, Shen X, Scheinost D, Constable RT. The individual functional connectome is unique and stable over months to years. NeuroImage 2019, 189: 676-687. PMID: 30721751, PMCID: PMC6422733, DOI: 10.1016/j.neuroimage.2019.02.002.Peer-Reviewed Original ResearchConceptsHigh ID ratesIndividual differencesFunctional connectomeIndividual functional connectomesStable individual differencesID rateResting-state fMRI datasetsFrontoparietal networkFunctional connectivityParietal cortexFMRI datasetsIdiosyncratic aspectsConnectomeHead motionEntire brainFMRIBrainCortexSpecific datasetDifferencesConnectivity
2017
An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks
Salehi M, Karbasi A, Shen X, Scheinost D, Constable RT. An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks. NeuroImage 2017, 170: 54-67. PMID: 28882628, PMCID: PMC5905726, DOI: 10.1016/j.neuroimage.2017.08.068.Peer-Reviewed Original ResearchConceptsIndividualized parcellationParcellation techniqueFunctional networksCross-validated predictive modelSpecific functional networksCerebral cortexPatient subgroupsFunctional connectivity dataFunctional organizationBrainParcellation schemesClinical applicationParcellation approachParcellationSexSubgroupsConnectivity dataIndividualized studyNetwork organizationIndividualsAmple evidencePatientsCortexWeak functional connectivity in the human fetal brain prior to preterm birth
Thomason ME, Scheinost D, Manning JH, Grove LE, Hect J, Marshall N, Hernandez-Andrade E, Berman S, Pappas A, Yeo L, Hassan SS, Constable RT, Ment LR, Romero R. Weak functional connectivity in the human fetal brain prior to preterm birth. Scientific Reports 2017, 7: 39286. PMID: 28067865, PMCID: PMC5221666, DOI: 10.1038/srep39286.Peer-Reviewed Original ResearchConceptsFunctional connectivityResting-state functional MRIHuman fetal brainWeaker functional connectivityNeural functional connectivityPreterm birthPreterm brainRight-hemisphere homologsNeurological insultFetal brainNeurological problemsHuman fetusesFunctional MRIBrain functionNeurodevelopmental disordersNeural connectivityBirthPretermFetusesUteroLanguage regionsBrainFirst evidenceInsultMRI
2016
Does prenatal stress alter the developing connectome?
Scheinost D, Sinha R, Cross SN, Kwon SH, Sze G, Constable RT, Ment LR. Does prenatal stress alter the developing connectome? Pediatric Research 2016, 81: 214-226. PMID: 27673421, PMCID: PMC5313513, DOI: 10.1038/pr.2016.197.Peer-Reviewed Original ResearchConceptsAttention deficit hyperactivity disorderDeficit hyperactivity disorderStress-related symptomsPrenatal exposureRisk factorsMajor depressionFetal brainMaternal stressPrenatal stressNeural elementsNeurobehavioral disordersFunctional connectivityHyperactivity disorderHuman neurodevelopmentDisordersAutism spectrum disorderFunctional networksConnectomeSpectrum disorderHuman connectomePregnancySymptomsNeurodevelopmentSchizophreniaBrainFunctional magnetic resonance connectivity studies in infants born preterm: suggestions of proximate and long‐lasting changes in language organization
Kwon SH, Scheinost D, Vohr B, Lacadie C, Schneider K, Dai F, Sze G, Constable RT, Ment LR. Functional magnetic resonance connectivity studies in infants born preterm: suggestions of proximate and long‐lasting changes in language organization. Developmental Medicine & Child Neurology 2016, 58: 28-34. PMID: 27027605, PMCID: PMC6426123, DOI: 10.1111/dmcn.13043.Peer-Reviewed Original Research
2015
Preterm birth alters neonatal, functional rich club organization
Scheinost D, Kwon SH, Shen X, Lacadie C, Schneider KC, Dai F, Ment LR, Constable RT. Preterm birth alters neonatal, functional rich club organization. Brain Structure And Function 2015, 221: 3211-3222. PMID: 26341628, PMCID: PMC4779074, DOI: 10.1007/s00429-015-1096-6.Peer-Reviewed Original ResearchConceptsPT neonatesTerm neonatesRich-club organizationPreterm birth altersTerm-equivalent ageClub organizationFunctional magnetic resonance imagingMagnetic resonance imagingPT birthBirth altersWhole-brain networksNeonatesResonance imagingPretermFunctional connectivityFunctional segregationCognitive difficultiesEquivalent ageFunctional organizationBrain
2014
GABA, Resting-State Connectivity and the Developing Brain
Kwon SH, Scheinost D, Lacadie C, Benjamin J, Myers EH, Qiu M, Schneider KC, Rothman DL, Constable RT, Ment LR. GABA, Resting-State Connectivity and the Developing Brain. Neonatology 2014, 106: 149-155. PMID: 24970028, PMCID: PMC4134402, DOI: 10.1159/000362433.Peer-Reviewed Original ResearchConceptsGamma-aminobutyric acidTerm-equivalent agePreterm infantsGABA concentrationTerm controlsFunctional connectivityMagnetic resonance imaging (MRI) scansFunctional magnetic resonance imaging (fMRI) scansResting-state functional connectivityRegional GABA concentrationTerm control groupResonance imaging scansResting-state connectivityRight frontal lobeConcentration of GABANAA/cholineMagnetic resonance spectroscopyPreclinical dataImaging scansFrontal lobeControl groupInfantsBrainMRI dataAgeCerebral Lateralization is Protective in the Very Prematurely Born
Scheinost D, Lacadie C, Vohr BR, Schneider KC, Papademetris X, Constable RT, Ment LR. Cerebral Lateralization is Protective in the Very Prematurely Born. Cerebral Cortex 2014, 25: 1858-1866. PMID: 24451659, PMCID: PMC4459290, DOI: 10.1093/cercor/bht430.Peer-Reviewed Original ResearchConceptsVery preterm participantsPreterm participantsCerebral lateralizationFunctional connectivityPreterm birth altersSevere brain injuryPreterm brainBrain injuryBirth altersTemporal lobeTerm controlsVoxel-based measureDevelopmental delayRight hemisphere lateralizationTerm participantsLateralizationYoung adulthoodSignificant decreaseCerebral asymmetryFurther studiesHemisphere lateralizationLanguage scoresBrainParticipantsAlterations
2013
Potential Use and Challenges of Functional Connectivity Mapping in Intractable Epilepsy
Constable RT, Scheinost D, Finn ES, Shen X, Hampson M, Winstanley FS, Spencer DD, Papademetris X. Potential Use and Challenges of Functional Connectivity Mapping in Intractable Epilepsy. Frontiers In Neurology 2013, 4: 39. PMID: 23734143, PMCID: PMC3660665, DOI: 10.3389/fneur.2013.00039.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsFunctional connectivity mappingIntractable epilepsyFunctional connectivityResting-state functional magnetic resonanceConnectivity analysisConnectivity mappingWhole-brain assessmentFunctional brain organizationFunctional connectivity analysisFunctional magnetic resonanceEpileptogenic tissueEpilepsy patientsSurgical proceduresCortical regionsEpilepsyCompensatory responseBrain organizationHuman brainBrainFunctional organizationMagnetic resonanceVoxel levelTissuePatientsReview