Identifying EEG Biomarkers of Depression with Novel Explainable Deep Learning Architectures
Ellis C, Sancho M, Miller R, Calhoun V. Identifying EEG Biomarkers of Depression with Novel Explainable Deep Learning Architectures. Communications In Computer And Information Science 2024, 2156: 102-124. DOI: 10.1007/978-3-031-63803-9_6.Peer-Reviewed Original ResearchDeep learning modelsExplainability methodsExplainability analysisConvolutional neural network architectureLearning modelsRaw electroencephalogramNeural network architectureDeep learning architectureMajor depressive disorderLearning architectureNetwork architectureDeep learningModel architectureMultichannel electroencephalogramTraining approachArchitectureBiomarkers of depressionFrequency bandElectroencephalogramResearch contextDepressive disorderElectroencephalogram biomarkerAccuracyRight hemisphereExplainabilityCross-Sampling Rate Transfer Learning for Enhanced Raw EEG Deep Learning Classifier Performance in Major Depressive Disorder Diagnosis
Ellis C, Miller R, Calhoun V. Cross-Sampling Rate Transfer Learning for Enhanced Raw EEG Deep Learning Classifier Performance in Major Depressive Disorder Diagnosis. 2024, 00: 1-5. DOI: 10.1109/isbi56570.2024.10635743.Peer-Reviewed Original ResearchTransfer learningDeep learning classifier’s performanceEarly convolutional layersConvolutional neural networkDeep learning modelsDeep learning studiesConvolutional layersClassifier performanceDiagnosis tasksExplainability analysisNeural networkSleep datasetsRaw electroencephalographyLearning modelsIncreased robustnessDatasetChannel lossSampling rateModel accuracyMDD modelLearningRepresentationTaskLearning studiesElectroencephalography