2024
Cross-Sampling Rate Transfer Learning for Enhanced Raw EEG Deep Learning Classifier Performance in Major Depressive Disorder Diagnosis
Ellis C, Miller R, Calhoun V. Cross-Sampling Rate Transfer Learning for Enhanced Raw EEG Deep Learning Classifier Performance in Major Depressive Disorder Diagnosis. 2024, 00: 1-5. DOI: 10.1109/isbi56570.2024.10635743.Peer-Reviewed Original ResearchTransfer learningDeep learning classifier’s performanceEarly convolutional layersConvolutional neural networkDeep learning modelsDeep learning studiesConvolutional layersClassifier performanceDiagnosis tasksExplainability analysisNeural networkSleep datasetsRaw electroencephalographyLearning modelsIncreased robustnessDatasetChannel lossSampling rateModel accuracyMDD modelLearningRepresentationTaskLearning studiesElectroencephalography
2023
Improving Explainability for Single-Channel EEG Deep Learning Classifiers via Interpretable Filters and Activation Analysis*
Ellis C, Miller R, Calhoun V. Improving Explainability for Single-Channel EEG Deep Learning Classifiers via Interpretable Filters and Activation Analysis*. 2023, 00: 2474-2481. DOI: 10.1109/bibm58861.2023.10385647.Peer-Reviewed Original ResearchDeep learning methodsLearning methodsContext of automated sleep stage classificationDeep learning classifierSleep stage classificationAutomated feature extractionMachine learning methodsImprove explainabilityLearned featuresFeature extractionExplainability methodsAwake samplesLearning classifiersRaw electroencephalographyIncrease model performanceLayer filtersExplainabilityModeling activitiesModel performanceFilterStage classificationClassifierFiltering activityElectroencephalographyFrequency filtering