Vince Calhoun, PhD
About
Research
Publications
2025
Tensor dictionary-based heterogeneous transfer learning to study emotion-related gender differences in brain
Yang L, Qiao C, Kanamori T, Calhoun V, Stephen J, Wilson T, Wang Y. Tensor dictionary-based heterogeneous transfer learning to study emotion-related gender differences in brain. Neural Networks 2025, 183: 106974. DOI: 10.1016/j.neunet.2024.106974.Peer-Reviewed Original ResearchFeature spaceClassification performanceHeterogeneous transfer learningTensor dictionary learningHeterogeneous knowledge sharingTransfer learning frameworkReduce training costsDictionary learningKnowledge sharing strategyHeterogeneous transferGender classificationTransfer learningLearning frameworkConnectivity dataHeterogeneous dataHeterogeneous knowledgeBrain activity dataPriori knowledgeTraining costsSharing strategyProblem of insufficient sample sizeKnowledge sharingEEG dataExperimental resultsDictionaryImpaired spatial dynamic functional network connectivity and neurophysiological correlates in functional hemiparesis
Premi E, Cantoni V, Benussi A, Iraji A, Calhoun V, Corbo D, Gasparotti R, Tinazzi M, Borroni B, Magoni M. Impaired spatial dynamic functional network connectivity and neurophysiological correlates in functional hemiparesis. NeuroImage Clinical 2025, 45: 103731. DOI: 10.1016/j.nicl.2025.103731.Peer-Reviewed Original Research
2024
Large-Scale Independent Vector Analysis (IVA-G) via Coresets
Gabrielson B, Yang H, Vu T, Calhoun V, Adali T. Large-Scale Independent Vector Analysis (IVA-G) via Coresets. IEEE Transactions On Signal Processing 2024, PP: 1-13. DOI: 10.1109/tsp.2024.3517323.Peer-Reviewed Original ResearchJoint blind source separationIndependent vector analysisBlind source separationSubset selection methodJoint diagonalizationMultivariate Gaussian modelSource separationSignificant scalabilityComputational costCoresetMultiple datasetsSelection methodDatasetMeasure of discrepancyGaussian modelVector analysisNumerous extensionsScalabilityMethodConsistent frontal-limbic-occipital connections in distinguishing treatment-resistant and non-treatment-resistant schizophrenia
Zhang Y, Gao S, Liang C, Bustillo J, Kochunov P, Turner J, Calhoun V, Wu L, Fu Z, Jiang R, Zhang D, Jiang J, Wu F, Peng T, Xu X, Qi S. Consistent frontal-limbic-occipital connections in distinguishing treatment-resistant and non-treatment-resistant schizophrenia. NeuroImage Clinical 2024, 45: 103726. PMID: 39700898, DOI: 10.1016/j.nicl.2024.103726.Peer-Reviewed Original ResearchNon-treatment-resistant schizophreniaTreatment-resistant schizophreniaFunctional connectivityDiagnosis of SZHealthy controlsFrontal-parietalResting-state functional connectivityAutomated anatomical labelingDysfunctional brain connectivityBrain functional connectivityAffiliated Brain Hospital of Nanjing Medical UniversityFrontal limbBrain connectivitySchizophreniaMedication dosageTreatment resistanceNeural pathwaysNanjing Medical UniversityDisease progressionMedical UniversityClinical practiceSpecific biomarkersDiagnosisAnatomical labelingA multimodal Neuroimaging-Based risk score for mild cognitive impairment
Zendehrouh E, Sendi M, Abrol A, Batta I, Hassanzadeh R, Calhoun V. A multimodal Neuroimaging-Based risk score for mild cognitive impairment. NeuroImage Clinical 2024, 45: 103719. PMID: 39637673, DOI: 10.1016/j.nicl.2024.103719.Peer-Reviewed Original ResearchMild cognitive impairment riskMild cognitive impairmentMild cognitive impairment groupRisk of mild cognitive impairmentRisk scoreUK Biobank participantsFunctional network connectivityCognitive impairmentPrecursor to ADSignificant cognitive declineBiobank participantsUK BiobankMild cognitive impairment individualsGenetic risk factorsAlzheimer's diseaseFunctional MRIHigh-risk groupStructural MRIAD riskRisk factorsCognitive declineFeatures of CNGray matterDifferentiate CNParticipantsAnxiety symptoms are differentially associated with facial expression processing in boys and girls
Doucet G, Kruse J, Keefe A, Rice D, Coutant A, Pulliam H, Smith O, Calhoun V, Stephen J, Wang Y, White S, Picci G, Taylor B, Wilson T. Anxiety symptoms are differentially associated with facial expression processing in boys and girls. Social Cognitive And Affective Neuroscience 2024, 19: nsae085. PMID: 39587034, PMCID: PMC11631531, DOI: 10.1093/scan/nsae085.Peer-Reviewed Original ResearchFacial expression processingAssociated with psychiatric disordersExpression processingFacial expressionsFunctional magnetic resonance imagingFace processing taskMedial temporal cortexTypically-developing youthLevels of anxietyEmotional facesNeutral contrastAnxiety symptomsPosterior networkPsychiatric disordersFacial emotionsBrain responsesTemporal cortexNeural mechanismsHigher anxietyFMRI dataAnxietySocial informationAnxiety levelsBehavioral changesMagnetic resonance imagingA multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data
Bi Y, Abrol A, Fu Z, Calhoun V. A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data. Human Brain Mapping 2024, 45: e26783. PMID: 39600159, PMCID: PMC11599617, DOI: 10.1002/hbm.26783.Peer-Reviewed Original ResearchConceptsCross-attention mechanismVision transformerDeep learning modelsBrain disordersCharacteristics of schizophreniaDiagnosis of schizophreniaStructural neuroimaging dataNetwork connectivity matrixData fusion approachAttention mapsMultimodal baselinesFunctional network connectivityFuse informationDeep learningICA algorithmFusion approachGrey matter mapsAI algorithmsFunctional network connectivity matricesLeverage multiple sources of informationGray matter imagesLearning modelsMultiple sources of informationBrain imaging modalitiesNetwork connectivityMultimodal predictive modeling: Scalable imaging informed approaches to predict future brain health
Ajith M, Spence J, Chapman S, Calhoun V. Multimodal predictive modeling: Scalable imaging informed approaches to predict future brain health. Journal Of Neuroscience Methods 2024, 414: 110322. PMID: 39608579, DOI: 10.1016/j.jneumeth.2024.110322.Peer-Reviewed Original ResearchStatic functional network connectivityHealth constructsNeuroimaging dataBrain healthResting-state functional magnetic resonance imagingFunctional magnetic resonance imagingSupport vector regressionFunctional network connectivityRandom forestCognitive performanceAssessment-onlyRs-fMRINeural patternsBehavioral outcomesBehavioral dataDiverse data sourcesNeural connectionsPsychological stateTraining stageMagnetic resonance imagingLongitudinal changesNetwork connectivityBrainPerformance evaluationVector regressionNetworks extracted from nonlinear fMRI connectivity exhibit unique spatial variation and enhanced sensitivity to differences between individuals with schizophrenia and controls
Kinsey S, Kazimierczak K, Camazón P, Chen J, Adali T, Kochunov P, Adhikari B, Ford J, van Erp T, Dhamala M, Calhoun V, Iraji A. Networks extracted from nonlinear fMRI connectivity exhibit unique spatial variation and enhanced sensitivity to differences between individuals with schizophrenia and controls. Nature Mental Health 2024, 1-12. DOI: 10.1038/s44220-024-00341-y.Peer-Reviewed Original ResearchSelf-referential cognitionFunctional magnetic resonance imaging connectivityFunctional brain connectivityCingulo-opercularDefault-modeSchizophrenia diagnosisExecutive regionsFMRI connectivityFunctional connectivityConnectivity analysisSchizophreniaSensitive to differencesBrain connectivityFunctional connectivity structureWidespread alterationsImaging connectivityIndependent component analysisBrain phenomenaNetwork integrationHypoconnectivityPsychosisCognitionCore regionNonlinear networksCase-control datasetA Method for Multimodal IVA Fusion Within a MISA Unified Model Reveals Markers of Age, Sex, Cognition, and Schizophrenia in Large Neuroimaging Studies
Silva R, Damaraju E, Li X, Kochunov P, Ford J, Mathalon D, Turner J, van Erp T, Adali T, Calhoun V. A Method for Multimodal IVA Fusion Within a MISA Unified Model Reveals Markers of Age, Sex, Cognition, and Schizophrenia in Large Neuroimaging Studies. Human Brain Mapping 2024, 45: e70037. PMID: 39560198, PMCID: PMC11574741, DOI: 10.1002/hbm.70037.Peer-Reviewed Original ResearchConceptsMultimodal neuroimaging datasetSchizophrenia patientsNeuroimaging studiesCognitive performanceGroup differencesSchizophreniaSex effectsNeuroimaging datasetsMagnetic resonance imagingCognitionAge-associated declineControl subjectsMarkers of agingResonance imagingNon-imaging variablesSubject profilesSexNeuroimagingUK Biobank dataset
News
News
- February 02, 2006
New MRI Technology at Yale: Brain Images that Show Structure and Function
- November 18, 2004
Brain Imaging Study of Drunk Drivers Pinpoints Neurological Changes
- July 20, 2004
NARSAD Funds 11 Yale University and Affiliated Researchers
- April 21, 2004
Imaging Test Could Be Used To Diagnose Schizophrenia