1999
Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR
Shen J, Petersen K, Behar K, Brown P, Nixon T, Mason G, Petroff O, Shulman G, Shulman R, Rothman D. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 8235-8240. PMID: 10393978, PMCID: PMC22218, DOI: 10.1073/pnas.96.14.8235.Peer-Reviewed Original ResearchConceptsGlutamate/glutamine cycleGlutamine cycleCerebral cortexMin/Rat cerebral cortexVivo 13C NMR spectraGlucose oxidation ratesHuman brainGlucose oxidationGlutamatergic activityRat modelTricarboxylic acid cycle rateParietal lobeHuman cortexCortexTime courseBrainGlutamine synthesisMajor metabolic fluxCycle rateTricarboxylic acid cycleHigh levelsInfusionRatsAcid cycle
1997
In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate–glutamine cycling
Sibson N, Dhankhar A, Mason G, Behar K, Rothman D, Shulman R. In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate–glutamine cycling. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 2699-2704. PMID: 9122259, PMCID: PMC20152, DOI: 10.1073/pnas.94.6.2699.Peer-Reviewed Original Research
1990
The Flux from Glucose to Glutamate in the Rat Brain in vivo as Determined by 1-Observed, 13C-Edited NMR Spectroscopy
Fitzpatrick S, Hetherington H, Behar K, Shulman R. The Flux from Glucose to Glutamate in the Rat Brain in vivo as Determined by 1-Observed, 13C-Edited NMR Spectroscopy. Cerebrovascular And Brain Metabolism Reviews 1990, 10: 170-179. PMID: 1968068, DOI: 10.1038/jcbfm.1990.32.Peer-Reviewed Original ResearchConceptsNMR spectroscopyNuclear magnetic resonance spectroscopyMagnetic resonance spectroscopyFirst-order rate constantsResonance spectroscopySpectroscopyRate constantsRapid exchangeDifference spectraTotal glutamate concentrationCarbonIsotopic enrichmentMin-1SpectraResonanceUnresolved resonancesMeasured intensitySteady stateComplete time courseConstants