2007
Altered cerebral glucose and acetate metabolism in succinic semialdehyde dehydrogenase‐deficient mice: evidence for glial dysfunction and reduced glutamate/glutamine cycling
Chowdhury GM, Gupta M, Gibson KM, Patel AB, Behar KL. Altered cerebral glucose and acetate metabolism in succinic semialdehyde dehydrogenase‐deficient mice: evidence for glial dysfunction and reduced glutamate/glutamine cycling. Journal Of Neurochemistry 2007, 103: 2077-2091. PMID: 17854388, DOI: 10.1111/j.1471-4159.2007.04887.x.Peer-Reviewed Original ResearchMeSH KeywordsAcetatesAmino AcidsAnimalsAnimals, NewbornBlood GlucoseCarbon IsotopesCerebral CortexGamma-Aminobutyric AcidGlutamate-Ammonia LigaseGlutamic AcidGlutamineImage Processing, Computer-AssistedMagnetic Resonance SpectroscopyMiceMice, KnockoutNeurogliaSodium OxybateSuccinate-Semialdehyde DehydrogenaseTime FactorsConceptsSSADH deficiencyLevels of GABAGlutamate/glutamine cyclingSuccinic semialdehyde dehydrogenase‐deficient miceGlutamine-C4Cerebral metabolismCerebral glucoseCortical extractsGlial dysfunctionIntraperitoneal infusionSuccinic semialdehyde dehydrogenaseGABA-C2Excessive elevationNeurotransmitter glutamateGABA synthesisGABAMiceGHBGlutamateGlutamine metabolismAspartate C3GliaCortexGlutamine cyclingGlial substrate
2001
In Vivo Nuclear Magnetic Resonance Studies of Glutamate-γ-Aminobutyric Acid-Glutamine Cycling in Rodent and Human Cortex: the Central Role of Glutamine
Behar K, Rothman D. In Vivo Nuclear Magnetic Resonance Studies of Glutamate-γ-Aminobutyric Acid-Glutamine Cycling in Rodent and Human Cortex: the Central Role of Glutamine. Journal Of Nutrition 2001, 131: 2498s-2504s. PMID: 11533301, DOI: 10.1093/jn/131.9.2498s.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsGamma-aminobutyric acidGlutamate-GABACortical glucose utilizationCortical electrical activityNet glutamine synthesisCerebral cortexInhibitory neurotransmitterMajor excitatoryBrain glutamateGlutamine synthesisNeurotransmitter glutamateRodent cortexGlucose utilizationHuman cortexGlutamine cycleElectrical activityCortexCentral roleGlutamine cyclingCommon mechanismGlucose oxidationGlutamateVivo nuclear magnetic resonance studiesRodentsGlutamine
1999
In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate--glutamine neurotransmitter cycle and functional neuroenergetics
Rothman D, Sibson N, Hyder F, Shen J, Behar K, Shulman R. In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate--glutamine neurotransmitter cycle and functional neuroenergetics. Philosophical Transactions Of The Royal Society B Biological Sciences 1999, 354: 1165-1177. PMID: 10466144, PMCID: PMC1692640, DOI: 10.1098/rstb.1999.0472.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsGlutamate-glutamine cycleNerve terminalsNeurotransmitter cycleGlucose metabolismBlood oxygenation level-dependent magnetic resonance imagingLevel-dependent magnetic resonance imagingBrain glucose oxidationCortical glucose metabolismMagnetic resonance spectroscopy studyCortex of ratsMagnetic resonance imagingFunctional imaging studiesSpecific neuronal activityOxidative glucose metabolismGlial cellsNeuronal activityResonance imagingImaging studiesHuman cortexBrain functionBrain activityRatsCortexGlucose oxidationGlutamate
1995
Initial Observations on Effect of Vigabatrin on In Vivo 1H Spectroscopic Measurements of γ‐Aminobutyric Acid, Glutamate, and Glutamine in Human Brain
Petroff O, Rothman D, Behar K, Mattson R. Initial Observations on Effect of Vigabatrin on In Vivo 1H Spectroscopic Measurements of γ‐Aminobutyric Acid, Glutamate, and Glutamine in Human Brain. Epilepsia 1995, 36: 457-464. PMID: 7614922, DOI: 10.1111/j.1528-1157.1995.tb00486.x.Peer-Reviewed Original ResearchConceptsGamma-aminobutyric acidGABA levelsMumol/Antiepileptic drugsOccipital GABA levelsEffective antiepileptic drugEffects of vigabatrinStandard medicationStandard doseΓ-aminobutyric acidHealthy subjectsEpileptic patientsVigabatrinPatientsGABA transaminaseHuman cerebrumNoninvasive measurementHuman brainBrainGlutamateInitial observationsMedicationsCerebrumLevelsDose
1992
NMR Determination of the TCA Cycle Rate and α-Ketoglutarate/Glutamate Exchange Rate in Rat Brain
Mason G, Rothman D, Behar K, Shulman R. NMR Determination of the TCA Cycle Rate and α-Ketoglutarate/Glutamate Exchange Rate in Rat Brain. Cerebrovascular And Brain Metabolism Reviews 1992, 12: 434-447. PMID: 1349022, DOI: 10.1038/jcbfm.1992.61.Peer-Reviewed Original Research
1989
Effects of Hypercarbia and Porta-Caval Shunting on Amino Acids and High Energy Phosphates of the Rat Brain: a 1H and 31P NMR Study
Behar K, Fitzpatrick S. Effects of Hypercarbia and Porta-Caval Shunting on Amino Acids and High Energy Phosphates of the Rat Brain: a 1H and 31P NMR Study. Experimental Biology And Medicine 1989, 189-200. DOI: 10.1007/978-1-4612-4506-3_13.Peer-Reviewed Original ResearchRat brainCerebral amino acidsEffects of hypercarbiaConcentration of glutamateHigh-energy phosphatesPorta-cavalCerebral hypoxiaMetabolic encephalopathiesHypercarbic acidosisAcute hyperammonemiaCerebral glutamateIntracellular acidosisEnergy phosphatesIncrease of glutamineHypercarbiaEncephalopathyAcidosisHyperammonemiaGlutamateBrainAmino acidsIntracellularIschemiaSeizuresShunting