2023
Targeted and selective knockout of the TLQP-21 neuropeptide unmasks its unique role in energy homeostasis
Sahu B, Razzoli M, McGonigle S, Pallais J, Nguyen M, Sadahiro M, Jiang C, Lin W, Kelley K, Rodriguez P, Mansk R, Cero C, Caviola G, Palanza P, Rao L, Beetch M, Alejandro E, Sham Y, Frontini A, Salton S, Bartolomucci A. Targeted and selective knockout of the TLQP-21 neuropeptide unmasks its unique role in energy homeostasis. Molecular Metabolism 2023, 76: 101781. PMID: 37482186, PMCID: PMC10400922, DOI: 10.1016/j.molmet.2023.101781.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDietEnergy MetabolismHomeostasisMiceNeuropeptidesPeptide FragmentsPeptide HormonesConceptsGenetic engineering approachesUnique metabolic phenotypeMass spectrometry identificationPrecursor geneGel digestionGenetic lossTLQP-21Cleavage siteC-terminal arginineGenesMutant sequencesSelective knockoutEssential roleBiological constraintsMetabolic phenotypeMouse linesEnergy homeostasisComposite phenotypeMutant miceValuable resourceVGF gene
2018
α1- and β3-Adrenergic Receptor–Mediated Mesolimbic Homeostatic Plasticity Confers Resilience to Social Stress in Susceptible Mice
Zhang H, Chaudhury D, Nectow AR, Friedman AK, Zhang S, Juarez B, Liu H, Pfau ML, Aleyasin H, Jiang C, Crumiller M, Calipari ES, Ku SM, Morel C, Tzavaras N, Montgomery SE, He M, Salton SR, Russo SJ, Nestler EJ, Friedman JM, Cao JL, Han MH. α1- and β3-Adrenergic Receptor–Mediated Mesolimbic Homeostatic Plasticity Confers Resilience to Social Stress in Susceptible Mice. Biological Psychiatry 2018, 85: 226-236. PMID: 30336931, PMCID: PMC6800029, DOI: 10.1016/j.biopsych.2018.08.020.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic alpha-1 Receptor AgonistsAdrenergic alpha-1 Receptor AntagonistsAdrenergic beta-3 Receptor AgonistsAdrenergic beta-3 Receptor AntagonistsAnimalsBehavior, AnimalDopaminergic NeuronsHomeostasisLocus CoeruleusMaleMiceNeural PathwaysNeuronal PlasticityReceptors, Adrenergic, alpha-1Receptors, Adrenergic, beta-3Resilience, PsychologicalStress, PsychologicalVentral Tegmental AreaConceptsSocial defeat stressDA neuronsSusceptible miceHomeostatic plasticityLocus coeruleusDefeat stressAdrenergic receptorsChronic social defeat stress (CSDS) modelSocial defeat stress modelVTA DA neuronsDepression-related behaviorsMesolimbic DA neuronsMesolimbic dopamine neuronsΒ3-adrenergic receptorMolecular profiling studiesNew molecular targetsSocial stressCircuit neuronsLC neuronsDopamine neuronsNucleus accumbensOptogenetic activationCellular hyperactivityPrecise circuitryStress resilience
2012
Role of Neurotrophins in the Development and Function of Neural Circuits That Regulate Energy Homeostasis
Fargali S, Sadahiro M, Jiang C, Frick AL, Indall T, Cogliani V, Welagen J, Lin WJ, Salton SR. Role of Neurotrophins in the Development and Function of Neural Circuits That Regulate Energy Homeostasis. Journal Of Molecular Neuroscience 2012, 48: 654-659. PMID: 22581449, PMCID: PMC3480664, DOI: 10.1007/s12031-012-9790-9.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsAutonomic Fibers, PostganglionicBasal MetabolismBrain StemCorticotropin-Releasing HormoneEatingEnergy MetabolismGene Expression RegulationGlucocorticoidsHomeostasisHumansHypothalamusNerve Growth FactorsNeural PathwaysNeuropeptidesReceptors, Nerve Growth FactorSignal TransductionSpinal CordSympathetic Nervous SystemConceptsNeurotrophic growth factorsNeurotrophic factorGrowth factorBrain-derived neurotrophic factorEnergy homeostasisRole of neurotrophinsSympathetic nervous systemPeripheral metabolic tissuesWhite adipose tissueNerve growth factorCiliary neurotrophic factorCentral nervous system developmentNeurotrophin-4/5Neurotrophin-3Neurotrophin familyNeuronal survivalNervous system developmentSpinal cordAdipose tissueNervous systemCircuit formationNeural circuitsMetabolic tissuesEnergy expenditureCritical gene products