2018
Striatin-1 is a B subunit of protein phosphatase PP2A that regulates dendritic arborization and spine development in striatal neurons
Li D, Musante V, Zhou W, Picciotto MR, Nairn AC. Striatin-1 is a B subunit of protein phosphatase PP2A that regulates dendritic arborization and spine development in striatal neurons. Journal Of Biological Chemistry 2018, 293: 11179-11194. PMID: 29802198, PMCID: PMC6052221, DOI: 10.1074/jbc.ra117.001519.Peer-Reviewed Original ResearchConceptsSerine/threonine phosphatase PP2AStriatin-interacting phosphataseRNA knockdown approachB subunitSTRIPAK complexPhosphatase PP2AProtein phosphataseMultiprotein complexesKnockdown approachStriatin familyMutant constructsStriatal neuronal culturesPP2ANeuronal developmentPrimary striatal neuronal culturesDendritic phenotypeKnockdown modelSynapse formationSubunitsSpine developmentSelective roleReduced expressionNeuron maturationNeuronal culturesStriatal neurons
2017
Reciprocal regulation of ARPP-16 by PKA and MAST3 kinases provides a cAMP-regulated switch in protein phosphatase 2A inhibition
Musante V, Li L, Kanyo J, Lam TT, Colangelo CM, Cheng SK, Brody AH, Greengard P, Le Novère N, Nairn AC. Reciprocal regulation of ARPP-16 by PKA and MAST3 kinases provides a cAMP-regulated switch in protein phosphatase 2A inhibition. ELife 2017, 6: e24998. PMID: 28613156, PMCID: PMC5515580, DOI: 10.7554/elife.24998.Peer-Reviewed Original ResearchConceptsARPP-16ARPP-19Protein phosphatase 2A inhibitionProtein phosphatase PP2A.Inhibition of PP2ASwitch-like responseKinase inhibitsPhosphatase PP2A.Regulatory interactionsPKA phosphorylationAntagonistic interplayReciprocal regulationBasal phosphorylationPhosphorylationMAST3PP2APKAENSAKinaseStriatal signalingPP2A.Multiple sitesInhibitionMitosisSignalingARPP-16 Is a Striatal-Enriched Inhibitor of Protein Phosphatase 2A Regulated by Microtubule-Associated Serine/Threonine Kinase 3 (Mast 3 Kinase)
Andrade EC, Musante V, Horiuchi A, Matsuzaki H, Brody AH, Wu T, Greengard P, Taylor JR, Nairn AC. ARPP-16 Is a Striatal-Enriched Inhibitor of Protein Phosphatase 2A Regulated by Microtubule-Associated Serine/Threonine Kinase 3 (Mast 3 Kinase). Journal Of Neuroscience 2017, 37: 2709-2722. PMID: 28167675, PMCID: PMC5354324, DOI: 10.1523/jneurosci.4559-15.2017.Peer-Reviewed Original ResearchConceptsSerine/threonine protein phosphataseSerine/threonine kinase 3Threonine protein phosphataseARPP-16Protein phosphataseKinase 3Protein phosphatase 2AProtein kinase A (PKA) signalingSmall acid-soluble proteinsKinase A SignalingAcid-soluble proteinsActivation of PKAPP2A substratesPhosphatase 2AARPP-16/19Heterotrimeric formMarked dephosphorylationSignal transductionSelective inhibitorPP2AA SignalingUnknown functionStriatal medium spiny neuronsMedium spiny neuronsSer46
2016
Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution
Nishi A, Matamales M, Musante V, Valjent E, Kuroiwa M, Kitahara Y, Rebholz H, Greengard P, Girault JA, Nairn AC. Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution. Journal Of Biological Chemistry 2016, 292: 1462-1476. PMID: 27998980, PMCID: PMC5270488, DOI: 10.1074/jbc.m116.752402.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1Ser-97PKA signalingDARPP-32Thr-34Activation of PP2A.Multiple cellular levelsProtein DARPP-32Phosphatase 1Heterotrimer complexPKA actionPhosphorylation stateNuclear localizationThr-75Phosphatase assaysDephosphorylationDARPP-32 phosphorylationCultured striatal neuronsSer-130Cellular levelSignalingPhosphorylationMajor siteStriatal neuronsGlutamate
2001
Opposing Changes in Phosphorylation of Specific Sites in Synapsin I During Ca2+-Dependent Glutamate Release in Isolated Nerve Terminals
Jovanovic J, Sihra T, Nairn A, Hemmings H, Greengard P, Czernik A. Opposing Changes in Phosphorylation of Specific Sites in Synapsin I During Ca2+-Dependent Glutamate Release in Isolated Nerve Terminals. Journal Of Neuroscience 2001, 21: 7944-7953. PMID: 11588168, PMCID: PMC6763853, DOI: 10.1523/jneurosci.21-20-07944.2001.Peer-Reviewed Original ResearchConceptsDependent dephosphorylationProtein phosphatase 2AMultiple protein kinasesPhosphorylation site 1Protein phosphatase 2BSynapsin IPhosphatase 2APhosphorylation sitesPhosphatase 2BSynapsin functionProtein kinaseDependent phosphorylationSynapsin I phosphorylationDephosphorylation processNeuronal phosphoproteinSynapsin I.Synaptic vesiclesCalcineurin activityPhosphorylationI phosphorylationDephosphorylationNeurotransmitter releaseSpecific sitesExcellent substrateSite 1Mechanisms for Increased Levels of Phosphorylation of Elongation Factor-2 during Hibernation in Ground Squirrels †
Chen Y, Matsushita M, Nairn A, Damuni Z, Cai D, Frerichs K, Hallenbeck J. Mechanisms for Increased Levels of Phosphorylation of Elongation Factor-2 during Hibernation in Ground Squirrels †. Biochemistry 2001, 40: 11565-11570. PMID: 11560506, DOI: 10.1021/bi010649w.Peer-Reviewed Original ResearchConceptsEukaryotic elongation factor 2EEF-2 phosphorylationElongation factor 2Elongation phaseEEF-2 kinase activityProtein phosphatase 2AGround squirrelsLevel of phosphorylationFactor 2Phosphatase 2ACellular functionsCatalytic subunitUncharacterized mechanismKinase activityInhibitor 2Protein synthesisPhosphorylationPP2AHibernating animalsActive animalsHibernatorsReversible mechanismSevere reductionSquirrelsHibernationAngiotensin II regulates phosphorylation of translation elongation factor-2 in cardiac myocytes
Everett A, Stoops T, Nairn A, Brautigan D. Angiotensin II regulates phosphorylation of translation elongation factor-2 in cardiac myocytes. AJP Heart And Circulatory Physiology 2001, 281: h161-h167. PMID: 11406481, DOI: 10.1152/ajpheart.2001.281.1.h161.Peer-Reviewed Original ResearchMeSH KeywordsAngiotensin IIAnimalsCells, CulturedChromonesEnzyme InhibitorsMitogen-Activated Protein KinasesMorpholinesMyocardiumPeptide Elongation Factor 2Phosphoprotein PhosphatasesPhosphorylationProtein BiosynthesisProtein Phosphatase 2RatsRats, Sprague-DawleyReceptor, Angiotensin, Type 1Receptor, Angiotensin, Type 2Receptors, AngiotensinSignal TransductionSirolimusConceptsEukaryotic elongation factor 2Mitogen-activated protein kinaseElongation factor 2Protein phosphatase 2A inhibitor okadaic acidTranslation elongation factor 2Protein synthesisInhibitor okadaic acidFactor 2Rapamycin (mTOR) inhibitor rapamycinProtein translationDephosphorylated statePolypeptide elongationII-dependent increaseProtein kinaseEEF2 kinaseOkadaic acidDependent regulationInhibitor FK506MAPK activationPD 98059Cardiac myocytesDephosphorylationInhibitor rapamycinNeonatal cardiac myocytesRat neonatal cardiac myocytes
2000
Amplification of dopaminergic signaling by a positive feedback loop
Nishi A, Bibb J, Snyder G, Higashi H, Nairn A, Greengard P. Amplification of dopaminergic signaling by a positive feedback loop. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 12840-12845. PMID: 11050161, PMCID: PMC18851, DOI: 10.1073/pnas.220410397.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalcineurinCocaineCyclic AMP-Dependent Protein KinasesCyclin-Dependent Kinase 5Cyclin-Dependent KinasesDopamineDopamine and cAMP-Regulated Phosphoprotein 32FeedbackIn Vitro TechniquesMiceMice, Inbred C57BLNeostriatumNerve Tissue ProteinsPhosphoprotein PhosphatasesPhosphoproteinsPhosphorylationProtein Phosphatase 2Receptors, Dopamine D1Receptors, Dopamine D2Signal TransductionConceptsState of phosphorylationProtein kinaseThr-75Protein phosphatase 2A activityCAMP-dependent protein kinasePhosphatase 2A activityCyclin-dependent kinase 5DARPP-32Dopamine D1 receptor-mediated activationDopamine D2 receptor stimulationStriatal DARPP-32Receptor-mediated activationD2 receptor stimulationAction of dopamineEffects of dopaminePositive feedback loopPKA signalingKinase 5Inhibitory constraintPhosphorylationAcute cocaineWhole animalNeostriatal slicesReceptor stimulationDopaminergic signalingRegulation of Phosphorylation of the GluR1 AMPA Receptor in the Neostriatum by Dopamine and Psychostimulants In Vivo
Snyder G, Allen P, Fienberg A, Valle C, Huganir R, Nairn A, Greengard P. Regulation of Phosphorylation of the GluR1 AMPA Receptor in the Neostriatum by Dopamine and Psychostimulants In Vivo. Journal Of Neuroscience 2000, 20: 4480-4488. PMID: 10844017, PMCID: PMC6772453, DOI: 10.1523/jneurosci.20-12-04480.2000.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBenzazepinesCentral Nervous System StimulantsDopamineDopamine and cAMP-Regulated Phosphoprotein 32In Vitro TechniquesMaleMethamphetamineMiceMice, Inbred C57BLMice, KnockoutMicrowavesNeostriatumNerve Tissue ProteinsOkadaic AcidPhosphoprotein PhosphatasesPhosphoproteinsPhosphorylationProtein Phosphatase 1Protein Phosphatase 2Receptors, AMPAReceptors, Dopamine D1Receptors, Dopamine D2Recombinant Fusion ProteinsSerineConceptsCAMP-dependent protein kinaseProtein phosphatase 2A.AMPA-type glutamate receptorsCalmodulin-dependent kinase IICalcium/calmodulin-dependent kinase IIRegulation of phosphorylationProtein kinase CPhosphatase 2A.Protein kinaseKinase IIPhosphorylation of GluR1Kinase CGluR1 AMPA receptorsPhosphorylationCellular effectorsGlutamate receptorsDARPP-32Physiological activityAMPA receptorsPsychostimulant cocaineChannel conductanceReceptorsD1-type dopamine receptorsActivationVivo
1999
Mutation of Tyr307 and Leu309 in the Protein Phosphatase 2A Catalytic Subunit Favors Association with the α4 Subunit Which Promotes Dephosphorylation of Elongation Factor-2 †
Chung H, Nairn A, Murata K, Brautigan D. Mutation of Tyr307 and Leu309 in the Protein Phosphatase 2A Catalytic Subunit Favors Association with the α4 Subunit Which Promotes Dephosphorylation of Elongation Factor-2 †. Biochemistry 1999, 38: 10371-10376. PMID: 10441131, DOI: 10.1021/bi990902g.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnion Exchange ResinsBacterial ProteinsCatalytic DomainChromatography, Ion ExchangeCOS CellsHemagglutininsLectinsLeucineMutagenesis, Site-DirectedOligopeptidesPeptide Elongation Factor 2Peptide Elongation FactorsPeptidesPhosphoprotein PhosphatasesPhosphoproteinsPhosphorylationPrecipitin TestsProtein Phosphatase 2Resins, SyntheticTransfectionTyrosineConceptsAlpha 4 proteinElongation factor 2AC dimerC subunitSpecific intracellular substratesProtein phosphatase 2ASites of phosphorylationAbc trimerCOS-7 cellsFactor 2B subunitC-terminal residuesTOR proteinsPhosphatase 2ANovel subunitCatalytic subunitTransient overexpressionSubstrate specificityCellular locationIntracellular substratesTransient expressionP70S6 kinaseSingle mutationProtein synthesisSubunitsRole of Calcineurin and Protein Phosphatase‐2A in the Regulation of DARPP‐32 Dephosphorylation in Neostriatal Neurons
Nishi A, Snyder G, Nairn A, Greengard P. Role of Calcineurin and Protein Phosphatase‐2A in the Regulation of DARPP‐32 Dephosphorylation in Neostriatal Neurons. Journal Of Neurochemistry 1999, 72: 2015-2021. PMID: 10217279, DOI: 10.1046/j.1471-4159.1999.0722015.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalcineurinCalcineurin InhibitorsCyclosporineDopamine and cAMP-Regulated Phosphoprotein 32Drug CombinationsDrug SynergismEnzyme InhibitorsIn Vitro TechniquesMaleMarine ToxinsMiceMice, Inbred C57BLNeostriatumNerve Tissue ProteinsNeuronsOkadaic AcidOxazolesPhosphoprotein PhosphatasesPhosphoproteinsPhosphorylationProtein Phosphatase 1Protein Phosphatase 2ConceptsProtein phosphatase 1Protein phosphatase 2AOkadaic acidPhosphorylated DARPP-32DARPP-32 phosphorylationPhosphatase 2APP-2ADARPP-32Cyclic AMP-dependent protein kinaseAMP-dependent protein kinasePP-2A activityRole of calcineurinPhosphatase 1Calyculin AMouse neostriatal slicesProtein kinaseAction of cyclosporinDependent activationCalcineurinPresence of cyclosporinPhosphorylationDephosphorylationSynergistic increaseThr34Potent inhibitor