2015
ChemInform Abstract: Synthesis of Benzopentathiepin Analogues and Their Evaluation as Inhibitors of the Phosphatase STEP.
Baguley T, Nairn A, Lombroso P, Ellman J. ChemInform Abstract: Synthesis of Benzopentathiepin Analogues and Their Evaluation as Inhibitors of the Phosphatase STEP. ChemInform 2015, 46: no-no. DOI: 10.1002/chin.201526245.Peer-Reviewed Original Research
2014
Correction to Substrate-Based Fragment Identification for the Development of Selective, Nonpeptidic Inhibitors of Striatal-Enriched Protein Tyrosine Phosphatase
Baguley T, Xu H, Chatterjee M, Nairn A, Lombroso P, Ellman J. Correction to Substrate-Based Fragment Identification for the Development of Selective, Nonpeptidic Inhibitors of Striatal-Enriched Protein Tyrosine Phosphatase. Journal Of Medicinal Chemistry 2014, 57: 10564-10564. PMCID: PMC4364512, DOI: 10.1021/jm5018847.Peer-Reviewed Original Research
2008
DARPP-32 Mediates the Actions of Multiple Drugs of Abuse
Svenningsson P, Nairn A, Greengard P. DARPP-32 Mediates the Actions of Multiple Drugs of Abuse. 2008, 3-16. DOI: 10.1007/978-0-387-76678-2_1.Peer-Reviewed Original ResearchPhosphorylation stateSerine/threonine protein phosphatasePP-1DARPP-32Threonine protein phosphataseState of phosphorylationProtein kinase A.Protein kinase AProtein phosphatasePhosphorylation sitesVirtue of regulationKinase AKey rolePhosphorylationThr34Potent inhibitorAdditional neurotransmittersCK2Ser97Behavioral responsesPhosphoproteinInhibitorsCK1Thr75Protein
2000
Letter to the Editor: Backbone 1H, 15N, and 13C resonance assignments of inhibitor-2 – a protein inhibitor of protein phosphatase-1
Huang H, Chen Y, Tsai L, Wang H, Lin F, Horiuchi A, Greengard P, Nairn A, Shiao M, Lin T. Letter to the Editor: Backbone 1H, 15N, and 13C resonance assignments of inhibitor-2 – a protein inhibitor of protein phosphatase-1. Journal Of Biomolecular NMR 2000, 17: 359-360. PMID: 11014604, DOI: 10.1023/a:1008355428294.Peer-Reviewed Original Research
1999
The design, synthesis, and biological evaluation of analogues of the serine-threonine protein phosphatase 1 and 2A selective inhibitor microcystin LA: rational modifications imparting PP1 selectivity
Aggen J, Humphrey J, Gauss C, Huang H, Nairn A, Chamberlin A. The design, synthesis, and biological evaluation of analogues of the serine-threonine protein phosphatase 1 and 2A selective inhibitor microcystin LA: rational modifications imparting PP1 selectivity. Bioorganic & Medicinal Chemistry 1999, 7: 543-564. PMID: 10220039, DOI: 10.1016/s0968-0896(98)00254-5.Peer-Reviewed Original ResearchConceptsPP1 selectivityProtein phosphatase 1Serine-threonine proteinMicrocystin-LAFirst-generation analogsSmall molecule inhibitorsPhosphatase 1Observed selectivityBiological evaluationMolecular modeling analysisMolecule inhibitorsRational modificationSelectivityStructural modificationsSynthesisAnaloguesInhibition assaysPP1MicrocystinsProteinLaModificationAssaysInhibitors
1997
A molecular modeling analysis of the binding interactions between the okadaic acid class of natural product inhibitors and the ser-thr phosphatases, PP1 and PP2A
Gauss C, Sheppeck J, Nairn A, Chamberlin R. A molecular modeling analysis of the binding interactions between the okadaic acid class of natural product inhibitors and the ser-thr phosphatases, PP1 and PP2A. Bioorganic & Medicinal Chemistry 1997, 5: 1751-1773. PMID: 9354231, DOI: 10.1016/s0968-0896(97)00145-4.Peer-Reviewed Original ResearchConceptsSerine-threonine proteinOkadaic acid classSignal transduction pathwaysNatural product inhibitorsCatalytic subunitTransduction pathwaysPP1Endogenous substratesProduct inhibitorsMolecular modeling analysisSer-ThrAcid classPP2AImportant roleComputer-generated modelsInhibitorsSubunitsProteinPathway
1996
Amyloid β Peptide Formation in Cell-free Preparations REGULATION BY PROTEIN KINASE C, CALMODULIN, AND CALCINEURIN*
Desdouits F, Buxbaum J, Desdouits-Magnen J, Nairn A, Greengard P. Amyloid β Peptide Formation in Cell-free Preparations REGULATION BY PROTEIN KINASE C, CALMODULIN, AND CALCINEURIN*. Journal Of Biological Chemistry 1996, 271: 24670-24674. PMID: 8798734, DOI: 10.1074/jbc.271.40.24670.Peer-Reviewed Original ResearchConceptsProtein kinase CAction of PKCCell-free systemIntact cellsKinase CProtein phosphatase calcineurinCell-permeant inhibitorStimulation of PKCSpecific peptide inhibitorPhosphatase calcineurinMolecular mechanismsCalcineurinPeptide inhibitorRegulationShort peptidesCalmodulinCellsBeta peptideInhibitorsPeptide formationPeptidesMajor constituentsPronounced inhibitionCyclosporin ASingle substrate
1988
DARPP‐32 and Phosphatase Inhibitor‐1, Two Structurally Related Inhibitors of Protein Phosphatase‐1, Are Both Present in Striatonigral Neurons
Nairn A, Hemmings H, Walaas S, Greengard P. DARPP‐32 and Phosphatase Inhibitor‐1, Two Structurally Related Inhibitors of Protein Phosphatase‐1, Are Both Present in Striatonigral Neurons. Journal Of Neurochemistry 1988, 50: 257-262. PMID: 3335843, DOI: 10.1111/j.1471-4159.1988.tb13258.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBasal GangliaCarrier ProteinsCorpus StriatumDopamine and cAMP-Regulated Phosphoprotein 32Electrophoresis, Polyacrylamide GelIntracellular Signaling Peptides and ProteinsKainic AcidMaleMusclesNerve Tissue ProteinsNeuronsPhosphoproteinsPhosphorylationProteinsRatsRats, Inbred StrainsSubstantia NigraConceptsPhosphatase inhibitor-1Protein phosphatase 1Phosphatase 1DARPP-32Inhibitor-1Striatonigral neuronsSubstantia nigraKainic acidStriatonigral fibersBiochemical propertiesRelated inhibitorsSpecific neuronal subpopulationsIpsilateral substantia nigraBovine caudate nucleusSpecific activityStriatal neuronsNeuronal localizationRat neostriatumNeuronal subpopulationsRat brainCaudate nucleusLesioned neostriatumNeostriatumNeuronsInhibitors