2025
MAP kinase phosphatases in metabolic diseases
Hota A, Bennett A. MAP kinase phosphatases in metabolic diseases. Trends In Endocrinology And Metabolism 2025 PMID: 40555575, DOI: 10.1016/j.tem.2025.05.002.Peer-Reviewed Original ResearchMitogen-activated protein kinaseInactivate mitogen-activated protein kinasesMAP kinase phosphatasesRegulation of MAPK signaling pathwaysMetabolic diseasesMAPK signaling pathwayRegulatory residuesInsulin signalingProtein kinaseSignaling pathwayCellular responsesKey pathwaysLipid metabolismGlucose homeostasisTherapeutic targetPathwayMetabolismKinaseResiduesHomeostasisMKPRegulationPhosphatase286-OR: Spatial Regulation of Glucose and Lipid Metabolism by Hepatic Insulin Signaling
HE B, COPPS K, WHITE M, TAO R. 286-OR: Spatial Regulation of Glucose and Lipid Metabolism by Hepatic Insulin Signaling. Diabetes 2025, 74 DOI: 10.2337/db25-286-or.Peer-Reviewed Original ResearchInsulin signalingHepatic Insulin SignalingDisrupted insulin signalingRegulation of glucoseSpatial regulationLipid homeostasisMetabolic enzymesFunctional significanceGlycolytic metabolismSystemic glucoseLipid metabolismGlucose homeostasisHepatic insulin sensitivityExcessive lipogenesisLipogenesisHomeostasisElevated blood glucoseType 2 diabetesMetabolismMetabolic dysregulationGlucoseHepatosteatosisLiver-to-muscleInsulin resistanceLipidThe subfornical organ is a nucleus for gut-derived T cells that regulate behaviour
Yoshida T, Nguyen M, Zhang L, Lu B, Zhu B, Murray K, Mineur Y, Zhang C, Xu D, Lin E, Luchsinger J, Bhatta S, Waizman D, Coden M, Ma Y, Israni-Winger K, Russo A, Wang H, Song W, Al Souz J, Zhao H, Craft J, Picciotto M, Grutzendler J, Distasio M, Palm N, Hafler D, Wang A. The subfornical organ is a nucleus for gut-derived T cells that regulate behaviour. Nature 2025, 1-10. PMID: 40437096, DOI: 10.1038/s41586-025-09050-7.Peer-Reviewed Original ResearchMeningeal T cellsCentral nervous systemT cellsSubfornical organCD4 T cellsInnate immune compartmentGut-brain axisSteady-state brainGut microbiotaSpecialized immune cellsCentral nervous system homeostasisAdaptive immune systemBiological functionsImmune compartmentGut-derived T cellsImmune cellsWhite adiposeImmune systemNervous systemAdipose tissueComposition of adipose tissueGastrointestinal tissuesWell-characterizedHomeostasisBrainTowards a consensus atlas of human and mouse adipose tissue at single-cell resolution
Loft A, Emont M, Weinstock A, Divoux A, Ghosh A, Wagner A, Hertzel A, Maniyadath B, Deplancke B, Liu B, Scheele C, Lumeng C, Ding C, Ma C, Wolfrum C, Strieder-Barboza C, Li C, Truong D, Bernlohr D, Stener-Victorin E, Kershaw E, Yeger-Lotem E, Shamsi F, Hui H, Camara H, Zhong J, Kalucka J, Ludwig J, Semon J, Jalkanen J, Whytock K, Dumont K, Sparks L, Muir L, Fang L, Massier L, Saraiva L, Beyer M, Jeschke M, Mori M, Boroni M, Walsh M, Patti M, Lynes M, Blüher M, Rydén M, Hamda N, Solimini N, Mejhert N, Gao P, Gupta R, Murphy R, Pirouzpanah S, Corvera S, Tang S, Das S, Schmidt S, Zhang T, Nelson T, O’Sullivan T, Efthymiou V, Wang W, Tong Y, Tseng Y, Mandrup S, Rosen E. Towards a consensus atlas of human and mouse adipose tissue at single-cell resolution. Nature Metabolism 2025, 7: 875-894. PMID: 40360756, DOI: 10.1038/s42255-025-01296-9.Peer-Reviewed Original ResearchConceptsCell annotationSingle-cell dataRegulation of metabolic homeostasisSingle-cell resolutionSingle-cell atlasMouse adipose tissueAdipose tissueMetabolic homeostasisSpecialized cellsPrimary repositoryAnnotationCellsExcess caloriesBionetworkProportion of adipocytesConnective tissueMiceTissueComplex connective tissueAdipocytesHomeostasisSpatial regulation of glucose and lipid metabolism by hepatic insulin signaling
He B, Copps K, Stöhr O, Liu B, Hu S, Joshi S, Haigis M, White M, Zhu H, Tao R. Spatial regulation of glucose and lipid metabolism by hepatic insulin signaling. Cell Metabolism 2025, 37: 1568-1583.e7. PMID: 40245868, DOI: 10.1016/j.cmet.2025.03.015.Peer-Reviewed Original ResearchInsulin signalingHepatic Insulin SignalingDisrupted insulin signalingRegulation of glucoseSpatial regulationLipid homeostasisElevated gluconeogenesisMetabolic enzymesFunctional significanceGlycolytic metabolismSystemic glucoseLipid metabolismGlucose homeostasisHepatic insulin sensitivityExcessive lipogenesisLipogenesisHomeostasisMetabolismMetabolic dysregulationHepatosteatosisHepatocytesGlucoseInsulin resistanceLipidType 2 diabetesThe other side of the incretin story: GIPR signaling in energy homeostasis
Nakandakari S, Fosam A, Perry R. The other side of the incretin story: GIPR signaling in energy homeostasis. Cell Metabolism 2025, 37: 1-3. PMID: 39778517, DOI: 10.1016/j.cmet.2024.12.003.Peer-Reviewed Original Research
2024
Cab45G trafficking through the insulin secretory pathway is altered in human type 2 diabetes
Germanos M, Yau B, Taper M, Yeoman C, Wilson A, An Y, Cattin-Ortolá J, Masler D, Tong J, Naghiloo S, Needham E, van der Kraan A, Sun K, Loudovaris T, Diaz-Vegas A, Larance M, Thomas H, von Blume J, Thorn P, Ailion M, Asensio C, Kebede M. Cab45G trafficking through the insulin secretory pathway is altered in human type 2 diabetes. IScience 2024, 28: 111719. PMID: 39898024, PMCID: PMC11787600, DOI: 10.1016/j.isci.2024.111719.Peer-Reviewed Original ResearchInsulin granule biogenesisGranule biogenesisSecretory granule biogenesisSpecialized secretory cellsInsulin secretory pathwaySecretory pathwayHuman type 2 diabetesCab45Insulin granulesBiogenesisB cellsSecretory cellsHuman donor isletsPancreatic B-cellsInsulin secretionType 2 diabetesG-locallyChaperoneT2DObese humansInsulinProteinHomeostasisPathwayGranulesDNA-Assisted Assays for Studying Lipid Transfer Between Membranes
Wang Y, Shi Q, Yang Q, Yang Y, Bian X. DNA-Assisted Assays for Studying Lipid Transfer Between Membranes. Methods In Molecular Biology 2024, 2888: 221-236. PMID: 39699734, DOI: 10.1007/978-1-0716-4318-1_15.Peer-Reviewed Original ResearchConceptsSynaptotagmin-like mitochondrial lipid-binding proteinLipid transfer assaysFluorescence resonance energy transferEndoplasmic reticulumLipid transferPlasma membraneLipid-binding proteinsLipid transfer proteinsTransfer assayE-SytsExtended-synaptotagminsResonance energy transferLipid homeostasisReleased lipidsTransfer proteinProteinAssayMembraneLipidTransfer signalsReticulumHomeostasisEnergy transferAstrocytic GLUT1 reduction paradoxically improves central and peripheral glucose homeostasis
Ardanaz C, de la Cruz A, Minhas P, Hernández-Martín N, Pozo M, Valdecantos M, Valverde Á, Villa-Valverde P, Elizalde-Horcada M, Puerta E, Ramírez M, Ortega J, Urbiola A, Ederra C, Ariz M, Ortiz-de-Solórzano C, Fernández-Irigoyen J, Santamaría E, Karsenty G, Brüning J, Solas M. Astrocytic GLUT1 reduction paradoxically improves central and peripheral glucose homeostasis. Science Advances 2024, 10: eadp1115. PMID: 39423276, PMCID: PMC11488540, DOI: 10.1126/sciadv.adp1115.Peer-Reviewed Original ResearchConceptsPeripheral glucose homeostasisBrain glucose metabolismGlucose metabolismAstrocytic glucose transporterGlucose homeostasisPeripheral glucose metabolismSystemic glucose metabolismATP releasePurinergic signalingBlood-borne glucoseBrain metabolismAstrocytesBrain energeticsInsulin signalingCognitive functionGlucose transportBrain functionMiceBrainGLUT1MetabolismHomeostasisObesityFlaviviruses manipulate mitochondrial processes to evade the innate immune response
Boytz R, Keita K, Pawlak J, Laurent-Rolle M. Flaviviruses manipulate mitochondrial processes to evade the innate immune response. Npj Viruses 2024, 2: 47. PMID: 39371935, PMCID: PMC11452341, DOI: 10.1038/s44298-024-00057-x.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMitochondrial processesAntiviral signaling proteinProgrammed Cell DeathRegulate various aspectsInnate immune response to viral infectionEukaryotic organellesResponse to viral infectionMitochondrial biologyInnate immune responseMitochondrial morphologyCellular processesSignaling proteinsCell deathImmune response to viral infectionInnate immunityMitochondriaCalcium homeostasisFlavivirusesViral infectionImmune responseOrganellesPathogensDynamic structureProteinHomeostasisCellular stiffness sensing through talin 1 in tissue mechanical homeostasis
Chanduri M, Kumar A, Weiss D, Emuna N, Barsukov I, Shi M, Tanaka K, Wang X, Datye A, Kanyo J, Collin F, Lam T, Schwarz U, Bai S, Nottoli T, Goult B, Humphrey J, Schwartz M. Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis. Science Advances 2024, 10: eadi6286. PMID: 39167642, PMCID: PMC11338229, DOI: 10.1126/sciadv.adi6286.Peer-Reviewed Original ResearchConceptsTissue mechanical homeostasisStiffness sensingExtracellular matrixTalin-1Mechanical homeostasisExtracellular matrix mechanicsIncreased cell spreadingCell spreadingTalinMutationsCellular sensingFibrillar collagenReduced axial stiffnessTissue mechanical propertiesMechanical propertiesAxial stiffnessCompliant substratesHomeostasisRupture pressureArp2/3ARPC5LStiffnessHomeostasis hypothesisResident cellsTissue stiffnessThe Human Skin Microbiome in Health: CME Part 1
MacGibeny M, Adjei S, Pyle H, Bunick C, Ghannoum M, Grada A, Harris-Tryon T, Tyring S, Kong H. The Human Skin Microbiome in Health: CME Part 1. Journal Of The American Academy Of Dermatology 2024 PMID: 39168311, PMCID: PMC11912297, DOI: 10.1016/j.jaad.2024.07.1498.Peer-Reviewed Original ResearchHuman skin microbiomeSkin microbiomeMicrobiome-host interactionsMicrobiome-based therapiesMyriad of microorganismsMicrobial ecologyCommensal microbesMicrobiomeMicrobiome alterationsOverall homeostasisAssociated with skin diseasesMicroorganismsIn vitroIntrinsic factorsCME seriesFungiMicrobesAnimal studiesSkin healthBacteriaSkin diseasesEcologyHomeostasisSkinHuman skin656 Wnt signaling activation in mature dermal adipocytes stimulates lipolysis and alters ECM homeostasis
Ma Q, Segal E, Wyetzner R, Horsley V, Atit R. 656 Wnt signaling activation in mature dermal adipocytes stimulates lipolysis and alters ECM homeostasis. Journal Of Investigative Dermatology 2024, 144: s115. DOI: 10.1016/j.jid.2024.06.672.Peer-Reviewed Original ResearchMitochondrial regulation of erythropoiesis in homeostasis and disease
Menon V, Slavinsky M, Hermine O, Ghaffari S. Mitochondrial regulation of erythropoiesis in homeostasis and disease. British Journal Of Haematology 2024, 205: 429-439. PMID: 38946206, PMCID: PMC11619715, DOI: 10.1111/bjh.19600.Peer-Reviewed Original ResearchClearance of mitochondriaComplex maturation processCell maturation processMitochondrial DNAMitochondrial participationChromatin condensationMitochondrial regulationMaturation processRetention of mitochondriaErythroid cell maturationNuclear expulsionMitochondriaErythroblast enucleationRed blood cell productionMature red blood cellsErythroid maturationRegulation of erythropoiesisCell maturationErythroid cellsHomeostasisCellsDisease conditionsRed blood cellsChromatinOrganellesRedefining intestinal stemness: The emergence of a new ISC population
Li M, Sumigray K. Redefining intestinal stemness: The emergence of a new ISC population. Cell 2024, 187: 2900-2902. PMID: 38848673, DOI: 10.1016/j.cell.2024.04.021.Peer-Reviewed Original ResearchSynaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivity
Sun S, Levenstein D, Li B, Mandelberg N, Chenouard N, Suutari B, Sanchez S, Tian G, Rinzel J, Buzsáki G, Tsien R. Synaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivity. Cell Reports 2024, 43: 113839. PMID: 38507409, PMCID: PMC12131992, DOI: 10.1016/j.celrep.2024.113839.Peer-Reviewed Original ResearchConceptsLong-term depressionLong-term potentiationSynaptic homeostasisPostsynaptic glutamate receptorsNeuronal inactivityNervous system functionGlutamate receptorsSynaptic adaptationHomeostatic changesHebbian mechanismsSynaptic plasticitySynaptic scalingRegulation of synapsesHomeostatic scalingMultiphasic responseHomeostatic regulationNeurological conditionsSynapsesSystem functionHomeostasisCaMKIICalcineurinInactivityMechanosensing regulates tissue repair program in macrophages
Meizlish M, Kimura Y, Pope S, Matta R, Kim C, Philip N, Meyaard L, Gonzalez A, Medzhitov R. Mechanosensing regulates tissue repair program in macrophages. Science Advances 2024, 10: eadk6906. PMID: 38478620, PMCID: PMC10936955, DOI: 10.1126/sciadv.adk6906.Peer-Reviewed Original ResearchConceptsExtracellular matrixRegulate chromatin accessibilityTissue repair programGene expression programsCytoskeletal dynamicsChromatin accessibilityAmoeboid migrationCytoskeletal remodelingBiochemical signalsTissue homeostasisExpression programsColony-stimulating factor-1Tissue-resident macrophagesFactor 1MechanosensingRegulating tissue repairTissue integrityMacrophagesTissueThree-dimensional environmentRepair programHomeostasisMitochondrial Unfolded Protein Response Gene Clpp Is Required for Oocyte Function and Female Fertility
Ergun Y, Imamoglu A, Cozzolino M, Demirkiran C, Basar M, Garg A, Yildirim R, Seli E. Mitochondrial Unfolded Protein Response Gene Clpp Is Required for Oocyte Function and Female Fertility. International Journal Of Molecular Sciences 2024, 25: 1866. PMID: 38339144, PMCID: PMC10855406, DOI: 10.3390/ijms25031866.Peer-Reviewed Original ResearchConceptsCaseinolytic peptidase PMouse modelProtein homeostasisStress responseUnfolded protein stress responseProtein stress responseCumulus/granulosa cellsOocyte competenceOocyte functionGlobal deletionFunctional abnormalitiesGenes clpPMetabolic stress responseFemale subfertilityFemale infertilityOocyte-specificOocytesReproductive functionMtUPRMiceProtein degradationReproductive competenceFemale fertilityDeletionHomeostasisDisruption of the bacterial OLE RNP complex impairs growth on alternative carbon sources
Lyon S, Wencker F, Fernando C, Harris K, Breaker R. Disruption of the bacterial OLE RNP complex impairs growth on alternative carbon sources. PNAS Nexus 2024, 3: pgae075. PMID: 38415217, PMCID: PMC10898510, DOI: 10.1093/pnasnexus/pgae075.Peer-Reviewed Original ResearchRNP complexesMinimal mediumWild-type cellsAlternative carbon sourcesUnfavorable growth conditionsOLE RNASuppressor selectionDiverse stressesCarbon/energy sourceProtein secretionCarbon sourceGenetic disruptionCellular adaptationNoncoding RNAsFunctional linkRNAGrowth conditionsRibonucleoproteinImpaired growthPhosphate homeostasisFundamental processesHomeostasisShort-chain alcoholsElevated MgCarbon/energyMotion of VAPB molecules reveals ER–mitochondria contact site subdomains
Obara C, Nixon-Abell J, Moore A, Riccio F, Hoffman D, Shtengel G, Xu C, Schaefer K, Pasolli H, Masson J, Hess H, Calderon C, Blackstone C, Lippincott-Schwartz J. Motion of VAPB molecules reveals ER–mitochondria contact site subdomains. Nature 2024, 626: 169-176. PMID: 38267577, PMCID: PMC10830423, DOI: 10.1038/s41586-023-06956-y.Peer-Reviewed Original ResearchConceptsContact sitesExchange of signaling moleculesInterorganelle communicationOrganelle tetheringEukaryotic cellsSingle-molecule imagingCellular physiologyThree-dimensional electron microscopyMembrane curvatureSignaling moleculesExchange of moleculesDynamic subdomainsNanoscale organizationProtein BMetabolic needsSubdomainsCellsSitesMutationsMoleculesRemodelingSites1,2HomeostasisCommunication hubRegulation
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply