2025
Structure and function of the human apoptotic scramblase Xkr4
Chakraborty S, Feng Z, Lee S, Alvarenga O, Panda A, Zhang S, Bruni R, Khelashvili G, Gupta K, Accardi A. Structure and function of the human apoptotic scramblase Xkr4. Nature Communications 2025, 16: 7317. PMID: 40781244, PMCID: PMC12334663, DOI: 10.1038/s41467-025-62739-1.Peer-Reviewed Original ResearchConceptsCombination of biochemical approachesMolecular mechanismsNegative electrostatic surfaceSurface of dying cellsCaspase cleavagePhosphatidylserine externalizationBiochemical approachesAcid residuesNovel conformationActivated scramblasesXKR4Electrostatic surfaceLigand bindingScramblaseMolecular dynamics simulationsCryoEM imagesMembrane thinningMembraneDynamics simulationsCaspaseCryoEMPhosphatidylserineConformationResiduesCleavageImplications for OLE RNA as a natural integral membrane RNA.
Lyon S, Breaker R. Implications for OLE RNA as a natural integral membrane RNA. RNA 2025, rna.080489.125. PMID: 40393771, DOI: 10.1261/rna.080489.125.Peer-Reviewed Original ResearchOLE RNARNA world organismsGram-positive bacterial speciesCellular stress responseEmergence of proteinsBacterial hostsLocalized to cell membranesBilayer of membranesRibonucleoprotein complexMaster regulatorsBacterial speciesBiochemical functionsEvolutionary emergenceStress responseRNANoncoding RNAsRNA polymersCell membraneUnusual classPhospholipid bilayersRibonucleoproteinMembraneProteinSpeciesOrnateLithium fine tunes lipid membranes through phospholipid binding
Bunel L, Adrien V, Coleman J, Heo P, Pincet F. Lithium fine tunes lipid membranes through phospholipid binding. Scientific Reports 2025, 15: 13366. PMID: 40246965, PMCID: PMC12006515, DOI: 10.1038/s41598-025-97828-0.Peer-Reviewed Original ResearchConceptsUnrelated pathwaysBipolar disorderIntracellular traffickingPhospholipid bindingMembrane protein activityMembrane reorganizationProtein activityMolecular mechanismsLithium effectsModel membrane systemsLipid bilayerBindingDiverse effectsEffects of lithiumMembraneLipid membranesMembrane systemPhospholipid headgroupsOrganellesLipid Dynamics at Membrane Contact Sites
Reinisch K, De Camilli P, Melia T. Lipid Dynamics at Membrane Contact Sites. Annual Review Of Biochemistry 2025, 94: 479-502. PMID: 40067957, DOI: 10.1146/annurev-biochem-083024-122821.Peer-Reviewed Original ResearchConceptsContact sitesOrganelle contact sitesMembrane contact sitesIntegral membrane proteinsLipid transfer proteinsVesicular traffickingEndoplasmic reticulumLipid transferMembrane proteinsLipid movementOrganellesLipid transportTransfer proteinCellular membranesProteinBilayer asymmetryLipid dynamicsShedding new lightLipidMembranePhysiological mechanismsEukaryotesSitesReticulumTraffickingThe pathway of unconventional protein secretion involves CUPS and a modified trans-Golgi network
Curwin A, Kurokawa K, Bigliani G, Brouwers N, Nakano A, Malhotra V. The pathway of unconventional protein secretion involves CUPS and a modified trans-Golgi network. Journal Of Cell Biology 2025, 224: e202312120. PMID: 40015244, PMCID: PMC11867701, DOI: 10.1083/jcb.202312120.Peer-Reviewed Original ResearchConceptsTrans-Golgi networkUnconventional protein secretionUnconventional secretionSuper-resolution confocal live imaging microscopyProtein secretionPhosphatidylinositol 3-phosphatePhosphatidylinositol 4-phosphateExtracts of membranesGolgi membranesConventional secretionGolgi cisternaeMembrane fusionSecreted proteinsCup formationPI4PRCY1Drs2GolgiProteinPhosphatidylinositolSecretionMembraneCOPIIImaging microscopyBiogenesis
2024
DNA-Assisted Assays for Studying Lipid Transfer Between Membranes
Wang Y, Shi Q, Yang Q, Yang Y, Bian X. DNA-Assisted Assays for Studying Lipid Transfer Between Membranes. Methods In Molecular Biology 2024, 2888: 221-236. PMID: 39699734, DOI: 10.1007/978-1-0716-4318-1_15.Peer-Reviewed Original ResearchConceptsSynaptotagmin-like mitochondrial lipid-binding proteinLipid transfer assaysFluorescence resonance energy transferEndoplasmic reticulumLipid transferPlasma membraneLipid-binding proteinsLipid transfer proteinsTransfer assayE-SytsExtended-synaptotagminsResonance energy transferLipid homeostasisReleased lipidsTransfer proteinProteinAssayMembraneLipidTransfer signalsReticulumHomeostasisEnergy transferConformational response of αIIbβ3 and αVβ3 integrins to force
Kolasangiani R, Farzanian K, Chen Y, Schwartz M, Bidone T. Conformational response of αIIbβ3 and αVβ3 integrins to force. Structure 2024, 33: 289-299.e4. PMID: 39706199, DOI: 10.1016/j.str.2024.11.016.Peer-Reviewed Original ResearchConceptsBind similar ligandsExtended conformationAvb3 integrinCellular mechanosensingAdhesion receptorsSubunit domainsCell mechanosensingPlasma membraneIntegrinMechanical signalsAll-atom simulationsSingle molecule measurementsConformational responseSubunitMechanosensingStructural dynamicsSolid tissuesCellsMolecule measurementsConformationAvb3Circulating plateletsEquivalent levelMembraneA proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs
Brown C, Ghosh S, McAllister R, Kumar M, Walker G, Sun E, Aman T, Panda A, Kumar S, Li W, Coleman J, Liu Y, Rothman J, Bhattacharyya M, Gupta K. A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs. Nature Methods 2024, 22: 412-421. PMID: 39609567, PMCID: PMC11810782, DOI: 10.1038/s41592-024-02517-x.Peer-Reviewed Original ResearchTarget membrane proteinsMembrane proteinsMembrane contextSynaptic vesicle membrane proteinVesicle membrane proteinsMammalian membrane proteinsMembrane-active polymersExtraction of membrane proteinsNative nanodiscsOrganellar membranesNative membrane environmentMultiprotein complexesMolecular contextCellular membranesMembrane environmentQuantitative platformBioanalytical approachesExtraction efficiencyOpen-access databasesProteinMembraneExtraction conditionsNanodiscsTarget MPVPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1
Ugur B, Schueder F, Shin J, Hanna M, Wu Y, Leonzino M, Su M, McAdow A, Wilson C, Postlethwait J, Solnica-Krezel L, Bewersdorf J, De Camilli P. VPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1. Journal Of Cell Biology 2024, 223: e202311189. PMID: 39331042, PMCID: PMC11451052, DOI: 10.1083/jcb.202311189.Peer-Reviewed Original ResearchConceptsLipid transportGolgi complex proteinGolgi subcompartmentsGolgi membranesGolgi cisternaeProtein familyFunctional partnersGolgi complexKO cellsComplex proteinsFAM177A1GolgiVPS13BAdjacent membranesMutationsProteinCohen syndromeLipidOrthologsInteractorsBrefeldinMembraneOrganellesSubcompartmentsDevelopmental disordersAntagonistic nanobodies implicate mechanism of GSDMD pore formation and potential therapeutic application
Schiffelers L, Tesfamariam Y, Jenster L, Diehl S, Binder S, Normann S, Mayr J, Pritzl S, Hagelauer E, Kopp A, Alon A, Geyer M, Ploegh H, Schmidt F. Antagonistic nanobodies implicate mechanism of GSDMD pore formation and potential therapeutic application. Nature Communications 2024, 15: 8266. PMID: 39327452, PMCID: PMC11427689, DOI: 10.1038/s41467-024-52110-1.Peer-Reviewed Original ResearchConceptsMembrane insertionGasdermin DN-terminal domainCleavage of gasdermin DPore formationPro-inflammatory caspasesPyroptosis to apoptosisActivated caspase-3Caspase-1 activationTarget membraneCaspase-3Assembled poresPlasma membraneCytosolic expressionLiving cellsConformational changesEnhanced caspase-1 activityOligomerizationPotential therapeutic applicationsInflammasome activationNanobodiesPyroptosisStudy pore formationMembraneTherapeutic applicationsProtocol for detecting glycoRNAs using metabolic labeling and northwestern blot
Li L, Zhang N, Pantoja C, Wang Y, Lu J. Protocol for detecting glycoRNAs using metabolic labeling and northwestern blot. STAR Protocols 2024, 5: 103321. PMID: 39298321, PMCID: PMC11426122, DOI: 10.1016/j.xpro.2024.103321.Peer-Reviewed Original ResearchCross-regulations of two connected domains form a mechanical circuit for steady force transmission during clathrin-mediated endocytosis
Ren Y, Yang J, Fujita B, Zhang Y, Berro J. Cross-regulations of two connected domains form a mechanical circuit for steady force transmission during clathrin-mediated endocytosis. Cell Reports 2024, 43: 114725. PMID: 39276354, PMCID: PMC11476202, DOI: 10.1016/j.celrep.2024.114725.Peer-Reviewed Original ResearchClathrin-mediated endocytosisF-actinActin cytoskeletonFission yeast Schizosaccharomyces pombeYeast Schizosaccharomyces pombeCell adhesion complexAdhesion complexesMembrane localizationPN forcesStable bindingEnd4pCross-regulationCytoskeletonActinEndocytosisMembraneBindingMechanical forcesTalinTransmission of forcesThatchForce transmissionDomainCellsFissionLipocoacervate, a tunable vesicle for protein delivery
Yeh C, Wright N, Loh C, Chu N, Wang Y. Lipocoacervate, a tunable vesicle for protein delivery. Nano Research 2024, 17: 9135-9140. DOI: 10.1007/s12274-024-6889-6.Peer-Reviewed Original ResearchProtein delivery vehiclesDelivery of proteinsCells in vitroGrowth factorVesiclesProteinMembrane functionControlled delivery of growth factorsTreated cells in vitroProtein deliveryControlled DeliveryControlled delivery of proteinsDelivery of therapeuticsSalt concentrationDelivery of growth factorsMembraneVesicle sizeControlled delivery of therapeuticsActive tension and membrane friction mediate cortical flows and blebbing in a model actomyosin cortex
Sakamoto R, Murrell M. Active tension and membrane friction mediate cortical flows and blebbing in a model actomyosin cortex. Physical Review Research 2024, 6: 033024. DOI: 10.1103/physrevresearch.6.033024.Peer-Reviewed Original ResearchActomyosin cortexCell membraneActin cytoskeletonCortical flowMembrane blebbingCell divisionCell migrationCytoskeletonActomyosinBiological phenomenaMembrane bulgesBlebsCellsMembraneViscoelastic fluidMechanical responseElastic stressesStress yieldActinUbiquitous structuresApoptosisMechanical stressMembrane elasticityPhysical behaviorLipid osmosis, membrane tension, and other mechanochemical driving forces of lipid flow
Zhang Y, Lin C. Lipid osmosis, membrane tension, and other mechanochemical driving forces of lipid flow. Current Opinion In Cell Biology 2024, 88: 102377. PMID: 38823338, PMCID: PMC11193448, DOI: 10.1016/j.ceb.2024.102377.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMembrane tensionLipid transportNonvesicular lipid transportLipid transfer proteinsOrganelle biogenesisLipid transferMembrane proteinsMembrane domainsLipid homeostasisBiological functionsLipid flowMembrane protein densityTransfer proteinMembrane regionsProtein densityProteinMembraneLipidBiogenesisOrganellesProtein condensates in the the secretory pathway: Unraveling biophysical interactions and function
Campelo F, Lillo J, von Blume J. Protein condensates in the the secretory pathway: Unraveling biophysical interactions and function. Biophysical Journal 2024, 123: 1531-1541. PMID: 38698644, PMCID: PMC11214006, DOI: 10.1016/j.bpj.2024.04.031.Peer-Reviewed Original ResearchSecretory pathwayProtein condensatesGolgi apparatusCellular processesEndoplasmic reticulumMembraneless organellesBiomolecular condensatesCellular consequencesCellular organizationBiochemical reactionsFunctional significanceProteinMembrane boundariesBiophysical interactionsPathwayMembraneSpecific componentsGolgiOrganellesReticulumOrganizationSecretoryCondensation interactionInteractionPhase separation phenomenonLipid scrambling is a general feature of protein insertases
Li D, Rocha-Roa C, Schilling M, Reinisch K, Vanni S. Lipid scrambling is a general feature of protein insertases. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2319476121. PMID: 38621120, PMCID: PMC11047089, DOI: 10.1073/pnas.2319476121.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsEndoplasmic reticulumMembrane proteinsPolypeptide chainLipid scramblingNascent polypeptide chainsVesicle traffickingBiochemical reconstitutionCytosolic leafletProtein insertionMembrane expansionInsertaseMembrane dynamicsHydrophilic grooveHydrophobic membrane interiorScramblaseProteinLipidMembraneBilayer leafletsMembrane interiorOrganellesReticulumPolypeptideTraffickingCell Membrane Tension Gradients, Membrane Flows, and Cellular Processes
Yan Q, Gomis Perez C, Karatekin E. Cell Membrane Tension Gradients, Membrane Flows, and Cellular Processes. Physiology 2024, 39: 231-245. PMID: 38501962, PMCID: PMC11368524, DOI: 10.1152/physiol.00007.2024.Peer-Reviewed Original ResearchDetection of membrane fission in single Bacillus subtilis cells during endospore formation with high temporal resolution
Landajuela A, Braun M, Rodrigues C, Karatekin E. Detection of membrane fission in single Bacillus subtilis cells during endospore formation with high temporal resolution. STAR Protocols 2024, 5: 102965. PMID: 38502684, PMCID: PMC10963649, DOI: 10.1016/j.xpro.2024.102965.Peer-Reviewed Original ResearchDimeric Tubulin Modifies Mechanical Properties of Lipid Bilayer, as Probed Using Gramicidin A Channel
Rostovtseva T, Weinrich M, Jacobs D, Rosencrans W, Bezrukov S. Dimeric Tubulin Modifies Mechanical Properties of Lipid Bilayer, as Probed Using Gramicidin A Channel. International Journal Of Molecular Sciences 2024, 25: 2204. PMID: 38396879, PMCID: PMC10889239, DOI: 10.3390/ijms25042204.Peer-Reviewed Original ResearchConceptsRegulation of protein-protein interactionsProtein-protein interactionsNon-lamellar lipidsMembrane hydrophobic coreMembrane remodelingMechanical properties of lipid bilayersMembrane bindingProperties of lipid bilayersRegulatory functionsTubulin bindingTubulinHydrophobic regionLipid headgroupsHydrophobic coreCell proliferationLipid bilayerPlanar lipid membranesMembrane mechanical propertiesMembraneMolecular probesLipid packingLipidLipid membranesGramicidin A channelBinding
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply