2025
Lipid Dynamics at Membrane Contact Sites
Reinisch K, De Camilli P, Melia T. Lipid Dynamics at Membrane Contact Sites. Annual Review Of Biochemistry 2025, 94: 479-502. PMID: 40067957, DOI: 10.1146/annurev-biochem-083024-122821.Peer-Reviewed Original ResearchConceptsContact sitesOrganelle contact sitesMembrane contact sitesIntegral membrane proteinsLipid transfer proteinsVesicular traffickingEndoplasmic reticulumLipid transferMembrane proteinsLipid movementOrganellesLipid transportTransfer proteinCellular membranesProteinBilayer asymmetryLipid dynamicsShedding new lightLipidMembranePhysiological mechanismsEukaryotesSitesReticulumTrafficking
2024
DNA-Assisted Assays for Studying Lipid Transfer Between Membranes
Wang Y, Shi Q, Yang Q, Yang Y, Bian X. DNA-Assisted Assays for Studying Lipid Transfer Between Membranes. Methods In Molecular Biology 2024, 2888: 221-236. PMID: 39699734, DOI: 10.1007/978-1-0716-4318-1_15.Peer-Reviewed Original ResearchConceptsSynaptotagmin-like mitochondrial lipid-binding proteinLipid transfer assaysFluorescence resonance energy transferEndoplasmic reticulumLipid transferPlasma membraneLipid-binding proteinsLipid transfer proteinsTransfer assayE-SytsExtended-synaptotagminsResonance energy transferLipid homeostasisReleased lipidsTransfer proteinProteinAssayMembraneLipidTransfer signalsReticulumHomeostasisEnergy transferLipid osmosis, membrane tension, and other mechanochemical driving forces of lipid flow
Zhang Y, Lin C. Lipid osmosis, membrane tension, and other mechanochemical driving forces of lipid flow. Current Opinion In Cell Biology 2024, 88: 102377. PMID: 38823338, PMCID: PMC11193448, DOI: 10.1016/j.ceb.2024.102377.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMembrane tensionLipid transportNonvesicular lipid transportLipid transfer proteinsOrganelle biogenesisLipid transferMembrane proteinsMembrane domainsLipid homeostasisBiological functionsLipid flowMembrane protein densityTransfer proteinMembrane regionsProtein densityProteinMembraneLipidBiogenesisOrganelles
2023
Lipid Sorting and Organelle Identity.
Kim Y, Burd C. Lipid Sorting and Organelle Identity. Cold Spring Harbor Perspectives In Biology 2023, 15: a041397. PMID: 37487627, PMCID: PMC10547387, DOI: 10.1101/cshperspect.a041397.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsTrafficking of lipidsSynthesis of sphingolipidsLipid transfer proteinOrganelle identityMembrane traffickingOrganelle homeostasisSoluble lipid transfer proteinsBulk membrane propertiesOrganelle functionGolgi networkLipid sortingNet membrane chargeOrganelle membranesPlasma membraneEndoplasmic reticulumParticular lipidsOrganellesTransfer proteinLeaflet asymmetryEssential roleBulk membraneCholesterol fluxTraffickingMembraneSecretoryRBG Motif Bridge-Like Lipid Transport Proteins: Structure, Functions, and Open Questions
Hanna M, Guillén-Samander A, De Camilli P. RBG Motif Bridge-Like Lipid Transport Proteins: Structure, Functions, and Open Questions. Annual Review Of Cell And Developmental Biology 2023, 39: 409-434. PMID: 37406299, DOI: 10.1146/annurev-cellbio-120420-014634.Peer-Reviewed Original ResearchLipid transfer proteinMembrane contact sitesVesicle-mediated trafficTransport of lipidsPutative physiological roleEukaryotic cellsEndocytic pathwayContact sitesLipid transportPhysiological roleTransfer proteinProteinHydrophobic channelRod-like structureLipidsEntire lengthDevelopmental disordersCytosolMutationsNew familyTransportPathwayMechanismMembraneCells
2022
Endoplasmic Reticulum Membrane Contact Sites, Lipid Transport, and Neurodegeneration.
Guillén-Samander A, De Camilli P. Endoplasmic Reticulum Membrane Contact Sites, Lipid Transport, and Neurodegeneration. Cold Spring Harbor Perspectives In Biology 2022, 15: a041257. PMID: 36123033, PMCID: PMC10071438, DOI: 10.1101/cshperspect.a041257.Peer-Reviewed Original ResearchConceptsMembrane contact sitesEndoplasmic reticulumEndoplasmic reticulum membrane contact sitesContact sitesLipid transportER membrane contact sitesCross talkLipid transfer proteinMutations of genesFamilial neurodegenerative diseasesIntracellular membranous organellesEndomembrane systemLipid trafficVesicular transportCell physiologyPlasma membraneMembranous organellesMembrane lipidsLipid exchangeTransfer proteinCell compartmentProteinNeurodegenerative diseasesMultiplicity of rolesDendritic tipsA partnership between the lipid scramblase XK and the lipid transfer protein VPS13A at the plasma membrane
Guillén-Samander A, Wu Y, Pineda SS, García FJ, Eisen JN, Leonzino M, Ugur B, Kellis M, Heiman M, De Camilli P. A partnership between the lipid scramblase XK and the lipid transfer protein VPS13A at the plasma membrane. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2205425119. PMID: 35994651, PMCID: PMC9436381, DOI: 10.1073/pnas.2205425119.Peer-Reviewed Original ResearchConceptsCaudate neuronsClinical manifestationsExposure of PtdSerPH domainMcLeod syndromeCell surface exposureER-PM contactsLipid dropletsTransport of lipidsPutative roleUnknown mechanismNeuronsLipid transfer proteinVPS13ALipid scramblasesTransfer proteinCytosolic loopExposurePlasma membraneCell surfaceEndoplasmic reticulumLipid transferERSyndromeDiseaseER-lysosome lipid transfer protein VPS13C/PARK23 prevents aberrant mtDNA-dependent STING signaling
Hancock-Cerutti W, Wu Z, Xu P, Yadavalli N, Leonzino M, Tharkeshwar AK, Ferguson SM, Shadel GS, De Camilli P. ER-lysosome lipid transfer protein VPS13C/PARK23 prevents aberrant mtDNA-dependent STING signaling. Journal Of Cell Biology 2022, 221: e202106046. PMID: 35657605, PMCID: PMC9170524, DOI: 10.1083/jcb.202106046.Peer-Reviewed Original ResearchConceptsParkinson's diseasePD pathogenesisLeucine-rich repeat kinase 2 (LRRK2) G2019S mutationCGAS-STING pathwayAccumulation of lysosomesDNA-sensing cGAS-STING pathwayImmune activationLipid profileSTING signalingG2019S mutationAutosomal recessive Parkinson's diseaseRecessive Parkinson's diseaseModel human cell linesHuman cell linesCell linesPathogenesisLate endosomes/lysosomesDiseaseVPS13CEndosomes/lysosomesCurrent studyTransfer proteinActivationCellsPathwaySHIP164 is a chorein motif lipid transfer protein that controls endosome–Golgi membrane traffic
Hanna MG, Suen PH, Wu Y, Reinisch KM, De Camilli P. SHIP164 is a chorein motif lipid transfer protein that controls endosome–Golgi membrane traffic. Journal Of Cell Biology 2022, 221: e202111018. PMID: 35499567, PMCID: PMC9067936, DOI: 10.1083/jcb.202111018.Peer-Reviewed Original ResearchConceptsMannose-6-phosphate receptorCation-independent mannose-6-phosphate receptorMembrane contact sitesEarly endocytic pathwayGolgi membrane trafficLipid transfer proteinLipid transfer propertiesProtein-lipid ratioMembrane cargoMembrane trafficEndocytic membranesVesicular trafficRetrograde trafficEndocytic pathwayFunctional characterizationContact sitesMembranous organellesGolgi complexVesicle clustersCellular membranesTransfer proteinProteinLipid compositionOrganellesMembraneQuantitative Models of Lipid Transfer and Membrane Contact Formation
Zhang Y, Ge J, Bian X, Kumar A. Quantitative Models of Lipid Transfer and Membrane Contact Formation. Contact 2022, 5: 25152564221096024. PMID: 36120532, PMCID: PMC9481209, DOI: 10.1177/25152564221096024.Peer-Reviewed Original ResearchMembrane contact sitesLipid transfer proteinLipid transferMembrane tensionMCS formationLipid exchange mechanismsMembrane contact formationOrganelle biogenesisExtended synaptotagminsOrganelle dynamicsMembrane proteinsDifferent organellesMembrane bindingMembrane expansionContact sitesMolecular mechanismsLipid flowLipid homeostasisTransfer proteinSimple lipidsProteinMembraneDistinct compositionLipidsKey role
2021
Intracellular C3 prevents hepatic steatosis by promoting autophagy and very‐low‐density lipoprotein secretion
Li Y, Sha Y, Wang H, He L, Li L, Wen S, Sheng L, Hu W, Zhou H. Intracellular C3 prevents hepatic steatosis by promoting autophagy and very‐low‐density lipoprotein secretion. The FASEB Journal 2021, 35: e22037. PMID: 34762761, DOI: 10.1096/fj.202100856r.Peer-Reviewed Original ResearchConceptsVery-low-density lipoprotein secretionVery-low-density lipoproteinProtein disulfide isomeraseExpression of protein disulfide isomeraseMicrosomal TG transfer proteinPathogen recognitionHepatic lipid accumulationDisulfide isomeraseEndoplasmic reticulumIntracellular functionsAutophagy-relatedExtracellular milieuDisrupt interactionsVLDL secretionTransfer proteinLipoprotein secretionLipid accumulationIntracellular C3C3<sup>-/-</sup> miceComplement component C3C3 knockoutHepatic steatosisConvergence pointWild type miceKnockoutA model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis
Ghanbarpour A, Valverde DP, Melia TJ, Reinisch KM. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2101562118. PMID: 33850023, PMCID: PMC8072408, DOI: 10.1073/pnas.2101562118.Peer-Reviewed Original ResearchConceptsLipid transfer proteinEndoplasmic reticulumAutophagy protein ATG2Membrane dynamics processesTransfer proteinOrganelle biogenesisAutophagosome biogenesisCytosolic leafletOrganelle membranesMembrane expansionScramblasesVMP1Lipid homeostasisTMEM41BAtg9BiogenesisBulk lipidsProteinLipidsAtg2GolgiOrganellesReticulumLeafletsHomeostasis
2017
Endoplasmic Reticulum—Plasma Membrane Contact Sites
Saheki Y, De Camilli P. Endoplasmic Reticulum—Plasma Membrane Contact Sites. Annual Review Of Biochemistry 2017, 86: 1-26. PMID: 28301744, DOI: 10.1146/annurev-biochem-061516-044932.Peer-Reviewed Original ResearchConceptsPlasma membraneEndoplasmic reticulumProtein tethersEndoplasmic reticulum-plasma membrane contact sitesNonvesicular lipid transportER-PM contactsMembrane contact sitesLipid transfer proteinLipid trafficCell physiologyContact sitesMembranous organellesLipid transportBroad localizationTransfer proteinCross talkIntracellular CaDirect physical contactMultiplicity of rolesFunctional state
2016
Endoplasmic reticulum‐mediated signalling in cellular microdomains
Biwer L, Isakson B. Endoplasmic reticulum‐mediated signalling in cellular microdomains. Acta Physiologica 2016, 219: 162-175. PMID: 26973141, PMCID: PMC5018912, DOI: 10.1111/apha.12675.Peer-Reviewed Original ResearchConceptsEndoplasmic reticulumER-mitochondria junctionsImportant cellular organellesSpecific membrane proteinsSynthesis of proteinsLocalized proteinsER membraneCellular physiologyLipid signalingCellular signalingER architectureMembrane proteinsPhospholipid synthasesCellular stressCellular organellesCellular microdomainsOrganism homeostasisCytoplasmic networkSignalingPhospholipid transferIon channelsLipid synthesisTransfer proteinProteinElement expression
2013
Phosphatidylcholine Transfer Protein Interacts with Thioesterase Superfamily Member 2 to Attenuate Insulin Signaling
Ersoy B, Tarun A, D’Aquino K, Hancer N, Ukomadu C, White M, Michel T, Manning B, Cohen D. Phosphatidylcholine Transfer Protein Interacts with Thioesterase Superfamily Member 2 to Attenuate Insulin Signaling. Science Signaling 2013, 6: ra64. PMID: 23901139, PMCID: PMC3959124, DOI: 10.1126/scisignal.2004111.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsGlucoseHEK293 CellsHomeostasisHumansInhibitory Concentration 50InsulinLiverMechanistic Target of Rapamycin Complex 1MiceMice, TransgenicMultiprotein ComplexesPhospholipid Transfer ProteinsPhosphorylationSignal TransductionThiolester HydrolasesTOR Serine-Threonine KinasesTuberous Sclerosis Complex 2 ProteinTumor Suppressor ProteinsConceptsThioesterase superfamily member 2Insulin receptor substrate 2Phosphatidylcholine transfer proteinTSC1-TSC2 complexGenetic ablationRapamycin complex 1Transfer proteinSteady-state amountsMember 2Hepatic glucose homeostasisPhospholipid-binding proteinProtein exhibitInsulin signalingChemical inhibitionKey effectorsSubstrate 2Mammalian targetDiet-induced diabetesProteinTSC2KnockdownGlucose homeostasisPhospholipid-dependent mechanismsActivationComplexes 1
2004
CD1d function is regulated by microsomal triglyceride transfer protein
Brozovic S, Nagaishi T, Yoshida M, Betz S, Salas A, Chen D, Kaser A, Glickman J, Kuo T, Little A, Morrison J, Corazza N, Kim JY, Colgan SP, Young SG, Exley M, Blumberg RS. CD1d function is regulated by microsomal triglyceride transfer protein. Nature Medicine 2004, 10: 535-539. PMID: 15107843, DOI: 10.1038/nm1043.Peer-Reviewed Original ResearchConceptsMicrosomal triglyceride transfer proteinIntestinal epithelial cellsT cellsMajor histocompatibility complex class IInvariant NKT cellsInvariant T (MAIT) cellsHistocompatibility complex class INatural killer receptorsGlycolipid antigen presentationComplex class ITransfer proteinInvariant NKTCD1d expressionNKT cellsAntigen presentationKiller receptorsGlycolipid antigensCD1dConditional deletionClass IDistinct subsetsMTTP geneEpithelial cellsHepatocytesEndoplasmic reticulum
1998
Steroidogenic Acute Regulatory Protein (StAR) Is A Sterol Transfer Protein*
Kallen C, Billheimer J, Summers S, Stayrook S, Lewis M, Strauss J. Steroidogenic Acute Regulatory Protein (StAR) Is A Sterol Transfer Protein*. Journal Of Biological Chemistry 1998, 273: 26285-26288. PMID: 9756854, DOI: 10.1074/jbc.273.41.26285.Peer-Reviewed Original ResearchConceptsSterol carrier protein-2Steroidogenic acute regulatory proteinStAR proteinRegulatory proteinsSterol transferCholesterol side-chain cleavage enzyme systemMitochondrial targeting sequenceSterol transfer activityTransfer proteinSterol transfer proteinsOuter mitochondrial membraneTrypsin-treated mitochondriaAmino acid residuesLipid transfer proteinsTransfer of cholesterolDonor membranesSubstrate cholesterolInner membraneMitochondrial membraneIsolated mitochondriaTarget sequenceN-terminalTemperature-dependent mannerAcid residuesPhosphatidylcholine transfer
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply