2024
Computational modeling of the physical features that influence breast cancer invasion into adipose tissue
Zheng Y, Wang D, Beeghly G, Fischbach C, Shattuck M, O'Hern C. Computational modeling of the physical features that influence breast cancer invasion into adipose tissue. APL Bioengineering 2024, 8: 036104. PMID: 38966325, PMCID: PMC11223776, DOI: 10.1063/5.0209019.Peer-Reviewed Original ResearchBreast cancer invasionCancer cellsMechanical propertiesCancer invasionDiscrete element method simulationsMechanical properties of cancer cellsProperties of cancer cellsElement method simulationsCancer cell invasionAdipose tissueDegree of invasionCohesive spherical particlesBiochemical signalsMethod simulationsCell invasionMaster curveSpherical particlesExtracellular matrixAdipocytesInfluence disease progressionSystem pressureDeformable polyhedronInvasionDe-mixingCellsMechanosensing regulates tissue repair program in macrophages
Meizlish M, Kimura Y, Pope S, Matta R, Kim C, Philip N, Meyaard L, Gonzalez A, Medzhitov R. Mechanosensing regulates tissue repair program in macrophages. Science Advances 2024, 10: eadk6906. PMID: 38478620, PMCID: PMC10936955, DOI: 10.1126/sciadv.adk6906.Peer-Reviewed Original ResearchConceptsExtracellular matrixRegulate chromatin accessibilityTissue repair programGene expression programsCytoskeletal dynamicsChromatin accessibilityAmoeboid migrationCytoskeletal remodelingBiochemical signalsTissue homeostasisExpression programsColony-stimulating factor-1Tissue-resident macrophagesFactor 1MechanosensingRegulating tissue repairTissue integrityMacrophagesTissueThree-dimensional environmentRepair programHomeostasis
2021
Early events in endothelial flow sensing
Tanaka K, Joshi D, Timalsina S, Schwartz MA. Early events in endothelial flow sensing. Cytoskeleton 2021, 78: 217-231. PMID: 33543538, DOI: 10.1002/cm.21652.Peer-Reviewed Original ResearchConceptsFluid shear stressLymphatic endothelial cellsEndothelial cellsCytoskeletal pathwaysVascular morphogenesisBiochemical signalsGene expressionEC phenotypeLymphatic fluid flowEarly eventsPhysiologyImmediate mechanismPrimary mechanismRecent advancesMorphogenesisMechanotransductionSignalingPhenotypePathwayMechanismExpressionFlow sensingCellsImportant questions
2016
Endothelial fluid shear stress sensing in vascular health and disease
Baeyens N, Bandyopadhyay C, Coon BG, Yun S, Schwartz MA. Endothelial fluid shear stress sensing in vascular health and disease. Journal Of Clinical Investigation 2016, 126: 821-828. PMID: 26928035, PMCID: PMC4767335, DOI: 10.1172/jci83083.Peer-Reviewed Original ResearchConceptsNormal morphogenesisBiochemical signalsGene expressionSame pathwayFluid shear stressCell behaviorSpecialized mechanismsMorphogenesisPathwayPathological conditionsEndothelial cellsVascular physiologyVascular systemBasic mechanismsRecent advancesFlow signalingSignalingMechanismAdult lifePhysiologyExpression
2012
Visualization of Src and FAK Activity during the Differentiation Process from HMSCs to Osteoblasts
Liao X, Lu S, Zhuo Y, Winter C, Xu W, Wang Y. Visualization of Src and FAK Activity during the Differentiation Process from HMSCs to Osteoblasts. PLOS ONE 2012, 7: e42709. PMID: 22900044, PMCID: PMC3416797, DOI: 10.1371/journal.pone.0042709.Peer-Reviewed Original ResearchConceptsSrc activationFluorescence resonance energy transferFAK activationDifferentiation processActivation of FAKRegulates cellular adhesionSrc biosensorKinase FAKInduction of differentiationResonance energy transferFAKBiochemical signalsSrcCellular adhesionLiving cellsStem cellsOsteoblast differentiation processDifferentiationCellsBone cellsSrc/FAKInductionMesenchymal stem cellsActivityGenetics
2011
Dynamic molecular processes mediate cellular mechanotransduction
Hoffman BD, Grashoff C, Schwartz MA. Dynamic molecular processes mediate cellular mechanotransduction. Nature 2011, 475: 316-323. PMID: 21776077, PMCID: PMC6449687, DOI: 10.1038/nature10316.Peer-Reviewed Original ResearchConceptsCell adhesion complexesDistinct signaling pathwaysTransduction of forceDynamic molecular processesEmbryonic developmentCellular mechanotransductionPlasma membraneBiochemical signalsAdult physiologySignaling pathwaysCellular responsesSubcellular structuresMolecular processesNumerous diseasesMechanical forcesMuscular dystrophyCytoskeletonTransductionMechanotransductionPathwayPhysiologyDisassemblyRecent workMembraneAssembly
2009
Mechanotransduction in vascular physiology and atherogenesis
Hahn C, Schwartz MA. Mechanotransduction in vascular physiology and atherogenesis. Nature Reviews Molecular Cell Biology 2009, 10: 53-62. PMID: 19197332, PMCID: PMC2719300, DOI: 10.1038/nrm2596.Peer-Reviewed Original ResearchConceptsImportant regulatory factorEndothelial extracellular matrixBiochemical signalsGene expressionBlood pressureRegulatory factorsCellular responsesRegions of arteriesFluid shear stressBlood flowExtracellular matrixPhysiological responsesProgression of atherosclerosisSystemic risk factorsNormal physiological responseMechanical forcesChronic inflammationPhysiologyVascular physiologyRisk factorsHigh cholesterolVascular endotheliumAtherosclerosisBlood vesselsCells
2007
Integrin Cytoskeletal Interactions
Lad Y, Harburger DS, Calderwood DA. Integrin Cytoskeletal Interactions. Methods In Enzymology 2007, 426: 69-84. PMID: 17697880, DOI: 10.1016/s0076-6879(07)26004-5.Peer-Reviewed Original ResearchConceptsIntegrin cytoplasmic tailsCytoplasmic tailProtein-protein interaction studiesIntegrin-binding proteinsIntegrin adhesion receptorsCell-substratum adhesionCytoskeletal interactionsPlasma membraneCytoskeletal proteinsBiochemical signalsAdhesion receptorsIntracellular ligandsTail interactionsCellular activitiesIntegrin-cytoskeletal interactionsMechanical forcesRecombinant modelProteinInteraction studiesTailAdhesionInteractionRegulationDynamic interactionMembrane
2006
The Molecular Basis of Filamin Binding to Integrins and Competition with Talin
Kiema T, Lad Y, Jiang P, Oxley CL, Baldassarre M, Wegener KL, Campbell ID, Ylänne J, Calderwood DA. The Molecular Basis of Filamin Binding to Integrins and Competition with Talin. Molecular Cell 2006, 21: 337-347. PMID: 16455489, DOI: 10.1016/j.molcel.2006.01.011.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBinding SitesCalpainContractile ProteinsCrystallography, X-RayFilaminsIntegrin beta ChainsMiceMicrofilament ProteinsModels, MolecularMolecular Sequence DataNIH 3T3 CellsNuclear Magnetic Resonance, BiomolecularProtein BindingProtein ConformationProtein Structure, TertiaryRecombinant Fusion ProteinsReproducibility of ResultsSequence Homology, Amino AcidTalinConceptsAdhesion receptorsTalin-dependent integrin activationActin-crosslinking proteinsIntegrin adhesion receptorsHigh-resolution structuresFilamin bindingExtended beta strandActin cytoskeletonIntegrin tailsMultiple transmembraneMolecular basisStrands CBeta strandsDomain interactionsBiochemical signalsIntegrin functionIntegrin activationFilamin ATalinCell membraneTail formsCytoskeletonProteinBinding sitesFilamin
2005
αvβ3 Integrin Activation and Matrix Binding Mediate Cellular Responses to Mechanical Stretch.
Katsumi A, Matsushita T, Naoe T, Schwartz M. αvβ3 Integrin Activation and Matrix Binding Mediate Cellular Responses to Mechanical Stretch. Blood 2005, 106: 3689. DOI: 10.1182/blood.v106.11.3689.3689.Peer-Reviewed Original ResearchIntegrin Activation and Matrix Binding Mediate Cellular Responses to Mechanical Stretch*
Katsumi A, Naoe T, Matsushita T, Kaibuchi K, Schwartz MA. Integrin Activation and Matrix Binding Mediate Cellular Responses to Mechanical Stretch*. Journal Of Biological Chemistry 2005, 280: 16546-16549. PMID: 15760908, DOI: 10.1074/jbc.c400455200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell AdhesionEnzyme ActivationEnzyme InhibitorsExtracellular MatrixExtracellular Signal-Regulated MAP KinasesIntegrin alphaVbeta3IntegrinsJNK Mitogen-Activated Protein KinasesLigandsMAP Kinase Kinase 4MiceMitogen-Activated Protein Kinase KinasesNIH 3T3 CellsPhosphatidylinositol 3-KinasesPhosphorylationProtein ConformationSignal TransductionStress, MechanicalTime FactorsConceptsIntegrin activationExtracellular matrix proteinsRole of integrinsConformational activationBiochemical signalsNIH3T3 cellsMolecular mechanismsCellular responsesMatrix proteinsExtracellular matrixCell growthMechanical stretch stimulationIntegrin alphavbeta3IntegrinsMechanical tensionMechanical stretchCritical determinantStretch stimulationActivationPhosphoinositolMechanotransductionJNKProteinApoptosisDifferentiation
2003
Inhibition of T cell activation through interruption of adaptor protein associations
Singer A, Bunnell S, Obstfeld A, Jordan M, Wu J, Myung P, Samelson L, Koretzky G. Inhibition of T cell activation through interruption of adaptor protein associations. Journal Of Surgical Research 2003, 114: 271. DOI: 10.1016/j.jss.2003.08.227.Peer-Reviewed Original ResearchSLP-76NF-ATSLP-76 functionTCR engagementT cell receptorMultiple hematopoietic lineagesLive confocal microscopyJurkat T cellsAdaptor LATInducible associationSecond messenger pathwaysBinding partnerComplex assemblyProtein associationBiochemical signalsHematopoietic lineagesAdaptor moleculeFusion proteinImmune synapseTCR stimulationJurkat cellsMessenger pathwaysCell membraneT cell activationBinding fragmentTalin forges the links between integrins and actin
Calderwood DA, Ginsberg MH. Talin forges the links between integrins and actin. Nature Cell Biology 2003, 5: 694-696. PMID: 12894175, DOI: 10.1038/ncb0803-694.Peer-Reviewed Original Research
2002
Effects of cell tension on the small GTPase Rac
Katsumi A, Milanini J, Kiosses WB, del Pozo MA, Kaunas R, Chien S, Hahn KM, Schwartz MA. Effects of cell tension on the small GTPase Rac. Journal Of Cell Biology 2002, 158: 153-164. PMID: 12105187, PMCID: PMC2173027, DOI: 10.1083/jcb.200201105.Peer-Reviewed Original ResearchMeSH KeywordsAmidesAnimalsAzepinesCell LineCell MembraneCell MovementCollagenDose-Response Relationship, DrugEnergy TransferGTP PhosphohydrolasesGuanine Nucleotide Exchange FactorsMicroscopy, FluorescenceMicroscopy, Phase-ContrastMicroscopy, VideoNaphthalenesNeoplasm ProteinsProteinsPseudopodiaPyridinesrac GTP-Binding ProteinsRatsStress, MechanicalT-Lymphoma Invasion and Metastasis-inducing Protein 1Time FactorsTransfection
2001
Increased filamin binding to β-integrin cytoplasmic domains inhibits cell migration
Calderwood D, Huttenlocher A, Kiosses W, Rose D, Woodside D, Schwartz M, Ginsberg M. Increased filamin binding to β-integrin cytoplasmic domains inhibits cell migration. Nature Cell Biology 2001, 3: 1060-1068. PMID: 11781567, DOI: 10.1038/ncb1201-1060.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SubstitutionAnimalsBinding SitesCell MovementCell PolarityCHO CellsContractile ProteinsCricetinaeCytoplasmCytoskeletonFibronectinsFilaminsFocal AdhesionsHumansIntegrin beta ChainsIntegrinsIsoleucineJurkat CellsMicrofilament ProteinsProtein Structure, TertiaryRecombinant Fusion ProteinsTalinValineConceptsFocal adhesion formationFilamin bindingCell migrationMembrane protrusionsMatrix assemblyIntegrin-dependent cell migrationFibronectin matrix assemblyAmino acid substitutionsInhibits cell migrationAnimal developmentActin cytoskeletonIntegrin tailsBiochemical signalsAdhesion receptorsFilaminCell polarizationTalinAcid substitutionsExtracellular matrixAdhesion formationTailBindingAssemblyMigrationSelective loss
1997
Alterations in Human Glomerular Epithelial Cells Interacting with Nonenzymatically Glycosylated Matrix*
Krishnamurti U, Rondeau E, Sraer J, Michael A, Tsilibary E. Alterations in Human Glomerular Epithelial Cells Interacting with Nonenzymatically Glycosylated Matrix*. Journal Of Biological Chemistry 1997, 272: 27966-27970. PMID: 9346947, DOI: 10.1074/jbc.272.44.27966.Peer-Reviewed Original ResearchConceptsCell-matrix interactionsNormal cell-matrix interactionsHuman glomerular epithelial cellsGlomerular epithelial cellsMitogen-activated protein kinaseEpithelial cellsDifferential gene expressionFocal adhesion kinaseExtracellular matrix proteinsInteraction of cellsAdhesion kinaseProtein kinaseBiochemical signalsGene expressionBiological processesCell spreadingIntracellular signalingMatrix proteinsReduced phosphorylationCell interiorCell behaviorMatrix glycationKinaseCritical roleCells
1992
The Primary Structure of MEK, a Protein Kinase that Phosphorylates the ERK Gene Product
Crews C, Alessandrini A, Erikson R. The Primary Structure of MEK, a Protein Kinase that Phosphorylates the ERK Gene Product. Science 1992, 258: 478-480. PMID: 1411546, DOI: 10.1126/science.1411546.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceCalcium-Calmodulin-Dependent Protein KinasesGene ExpressionMAP Kinase Kinase 1MiceMitogen-Activated Protein Kinase KinasesMolecular Sequence DataPhosphorylationProtein KinasesProtein Serine-Threonine KinasesProtein-Tyrosine KinasesProteinsRNA, MessengerSequence AlignmentConceptsExtracellular signal-regulated kinaseProtein kinaseMAP kinaseGene productsCritical protein kinaseSignal-regulated kinaseComplementary DNA sequenceMEK genesExtracellular signalsERK kinaseMultiple biochemical signalsDNA sequencesBiochemical signalsPrimary structureKinaseAmino acidsEnzymatic activityGenesMurine brainSequenceSchizosaccharomycesMEK1MEKThreonineProtein
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply