2025
The efficacy of METTL3 inhibition in pre-clinical models of MDS and AML.
Kenworthy C, Wei M, VanOudenhove J, Busarello E, Ramirez Amarilla C, Paul S, Cruz J, Baassiri A, Maul-Newby H, Biancon G, Tebaldi T, Halene S. The efficacy of METTL3 inhibition in pre-clinical models of MDS and AML. Journal Of Clinical Oncology 2025, 43 DOI: 10.1200/jco.2025.43.16_suppl.e18584.Peer-Reviewed Original ResearchAcute myeloid leukemiaMyelodysplastic syndromeInnate immune responseImmune signaturesTransplantation modelModel of myelodysplastic syndromeMurine models of leukemiaPreclinical anti-tumour efficacyImmune responseInnate immune cell subsetsSolid tumor clinical trialsSplicing factorsCompetitive transplant modelImmune checkpoint inhibitionMouse solid tumor modelsDouble-stranded RNAMyelodysplastic syndrome patientsInnate immune signaturesAnti-tumor efficacyImmune cell subsetsMyelodysplastic syndromes pathogenesisDriver genesSolid tumor modelsPre-clinical modelsModels of leukemiaSteamed panax notoginseng mitigates CA-MRSA USA300-induced necroptosis in human neutrophils
Zhang L, Feng X, An H, Yang W, Xia Y, Wen B, Zheng H, Chen Y, Cheng Y, Jiang C, Lu C, Tan Y. Steamed panax notoginseng mitigates CA-MRSA USA300-induced necroptosis in human neutrophils. Frontiers In Pharmacology 2025, 16: 1546652. PMID: 40520183, PMCID: PMC12163054, DOI: 10.3389/fphar.2025.1546652.Peer-Reviewed Original ResearchCA-MRSAVirulence factorsCommunity-associated methicillin-resistant <i>Staphylococcus aureus</i> (CAQuorum-sensing signaling pathwayPolymorphonuclear neutrophil countMethicillin-resistant <i>Staphylococcus aureus</i> (MRPhagocytic function of polymorphonuclear neutrophilsGenes of MRSAPolymorphonuclear neutrophilsSignaling pathwayCA-MRSA infectionsHost innate immune responseBacterial virulence factorsDrug-resistant bacterial infectionsMCP-1IL-1BIL-8Pro-inflammatory cytokines IL-1bDisrupt innate immunityInnate immune responseRNA-seqFunctions of polymorphonuclear neutrophilsPathogenic microbial infectionsPanax notoginsengCytokines IL-1bProliferative arrest induces neuronal differentiation and innate immune responses in normal and Creutzfeldt-Jakob Disease agent (CJ) infected rat septal neurons
Pagano N, Perez G, Garcia-Milian R, Manuelidis L. Proliferative arrest induces neuronal differentiation and innate immune responses in normal and Creutzfeldt-Jakob Disease agent (CJ) infected rat septal neurons. PLOS ONE 2025, 20: e0323825. PMID: 40434970, PMCID: PMC12118874, DOI: 10.1371/journal.pone.0323825.Peer-Reviewed Original ResearchConceptsSeptal neuronsInnate immune responseDifferential transcriptionCreutzfeldt-Jakob disease agentCJ infectionImmune responseBind misfolded proteinsInnate immune genesIntestinal myeloid cellsRat septal neuronsArrests normal cellsDisease agentsInnate immune transcriptsCreutzfeldt-JakobModel of latent infectionAnti-viral responseCDNA libraryUnique transcriptsPeripheral human bloodLate-onset diseaseUninfected neuronsUpregulated interferonImmune genesMyeloid cellsTranscriptionType I Interferon-Induced Modification of Yellow Fever Virus NS5 Enhances Binding to Human STAT2
Laurent-Rolle M, Morrison J. Type I Interferon-Induced Modification of Yellow Fever Virus NS5 Enhances Binding to Human STAT2. Methods In Molecular Biology 2025, 2913: 73-78. PMID: 40249426, DOI: 10.1007/978-1-0716-4458-4_7.Peer-Reviewed Original ResearchConceptsHuman STAT2Yellow fever virusStudy of virus-host interactionsNonstructural protein 5Human signal transducerVirus-host interactionsInnate immune responseNS5 proteinType III interferonsSignal transducerOverexpression techniquesSTAT2Immunoprecipitation methodProtein 5Cell linesIII interferonsFever virusPathogenic virusesTreated with type ITreated with interferonImmune responseVirusImmunoprecipitationNS5OverexpressionActivation of macrophages by extracellular vesicles derived from Babesia-infected red blood cells
Hagos B, Brasov I, Branscome H, Rashid S, Bradford R, Leonelli J, Kashanchi F, Mamoun C, Molestina R. Activation of macrophages by extracellular vesicles derived from Babesia-infected red blood cells. Infection And Immunity 2025, 93: e00333-24. PMID: 40172538, PMCID: PMC12070731, DOI: 10.1128/iai.00333-24.Peer-Reviewed Original ResearchConceptsInfected red blood cellsPrimary cause of human babesiosisRed blood cellsExtracellular vesiclesActivated macrophagesResponse to <i>B.Host-pathogen interactionsModulation of pro-inflammatory cytokinesBlood cellsElimination of parasitesPro-inflammatory cytokinesActivation of NF-kBActivation of macrophagesRelease of extracellular vesiclesInnate immune responseIncubation of macrophagesUninfected RBCsCo-culture experimentsHuman babesiosisProtozoan parasitesCytokine secretionImmune responseMacrophage activationBabesiosisEV fractionsWild Florida mottled ducks demonstrate strong heterogeneity in their humoral innate immune response.
Ayala A, Cheng M, Hellinger T, McBride K, Webb J, Fanning A, Snyder P, Ferragamo M, Garcia S, Sterner N, Bischoff K, Almagro-Moreno S, Ogbunugafor C. Wild Florida mottled ducks demonstrate strong heterogeneity in their humoral innate immune response. PLOS ONE 2025, 20: e0312653. PMID: 40096078, PMCID: PMC11913296, DOI: 10.1371/journal.pone.0312653.Peer-Reviewed Original ResearchConceptsFlorida mottled ducksAmerican Type Culture CollectionMottled ducksHumoral innate immune responseType Culture CollectionInnate immune responseVibrio sppEndemic subspeciesHabitat conversionInnate immune systemEco-immunologyCulture CollectionE. coliAnas platyrhynchosSubspeciesPeninsular FloridaConservation needsEffects of climate changeEcological covariatesHumoral innate immune systemBactericidal assayDucksResponse to agingWaterborne pathogensPathogensSelective STING Activation in Intratumoral Myeloid Cells via CCR2-Directed Antibody–Drug Conjugate TAK-500
Appleman V, Matsuda A, Ganno M, Zhang D, Rosentrater E, Lopez A, Porciuncula A, Hatten T, Christensen C, Merrigan S, Lee H, Lee M, Wang C, Dong L, Huang J, Iartchouk N, Wang J, Xu H, Yoneyama T, Piatkov K, Haridas S, Harbison C, Gregory R, Parent A, Lineberry N, Arendt C, Schalper K, Abu-Yousif A. Selective STING Activation in Intratumoral Myeloid Cells via CCR2-Directed Antibody–Drug Conjugate TAK-500. Cancer Immunology Research 2025, 13: 661-679. PMID: 39918395, PMCID: PMC12046323, DOI: 10.1158/2326-6066.cir-24-0103.Peer-Reviewed Original ResearchIntratumoral myeloid cellsMyeloid cellsTumor microenvironmentImmune responseCCR2+ cellsI interferonImmunosuppressive myeloid populationsImmune activation in vitroImmune cell markersLocal immune activationMurine tumor modelsAdaptive immune responsesAntibody drug conjugatesType I interferonAntitumor immunityInnate immune responseMyeloid populationsSTING agonistsSolid tumorsCCR2 proteinImmune activationTumor modelCell markersHuman tumorsAdaptive immunity
2024
BCG-Induced DNA Methylation Changes Improve Coronavirus Disease 2019 Vaccine Immunity Without Decreasing the Risk for Severe Acute Respiratory Syndrome Coronavirus 2 Infection
Longlax S, Koster K, Kamat A, Lozano M, Lerner S, Hannigan R, Nishiguchi T, Abhimanyu, Sheikh D, Ladki M, Portillo A, Koirala A, Patel T, Spieler Z, Benjamin A, Lebedev M, Ofili T, Hutchison R, Udeani G, Opperman L, Neal G, Mandalakas A, Netea M, Arditi M, Avalos P, Grimm S, Coarfa C, Cirillo J, DiNardo A. BCG-Induced DNA Methylation Changes Improve Coronavirus Disease 2019 Vaccine Immunity Without Decreasing the Risk for Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Open Forum Infectious Diseases 2024, 12: ofaf007. PMID: 39872813, PMCID: PMC11770274, DOI: 10.1093/ofid/ofaf007.Peer-Reviewed Original ResearchVaccine immunityDNA methylation changesBCG-induced trained immunityClinical trialsBCG vaccinationPlacebo-controlled clinical trialStudy enrollmentAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 infectionCovid-19 specific vaccineMethylation changesCoronavirus 2 infectionCOVID-19 vaccine immunitySymptomatic COVID-19Secondary analysisSARS-CoV-2 antigensInnate immune responseDouble-blindPlacebo armBCG TiceTrained immunitySevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Coronavirus immunityRespiratory syndrome coronavirus 2Flaviviruses manipulate mitochondrial processes to evade the innate immune response
Boytz R, Keita K, Pawlak J, Laurent-Rolle M. Flaviviruses manipulate mitochondrial processes to evade the innate immune response. Npj Viruses 2024, 2: 47. PMID: 39371935, PMCID: PMC11452341, DOI: 10.1038/s44298-024-00057-x.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMitochondrial processesAntiviral signaling proteinProgrammed Cell DeathRegulate various aspectsInnate immune response to viral infectionEukaryotic organellesResponse to viral infectionMitochondrial biologyInnate immune responseMitochondrial morphologyCellular processesSignaling proteinsCell deathImmune response to viral infectionInnate immunityMitochondriaCalcium homeostasisFlavivirusesViral infectionImmune responseOrganellesPathogensDynamic structureProteinHomeostasisChitinase 3-like-1 Inhibits Innate Antitumor and Tissue Remodeling Immune Responses by Regulating CD47-SIRPα- and CD24-Siglec10-Mediated Phagocytosis.
Ma B, Kamle S, Sadanaga T, Lee C, Lee J, Yee D, Zhu Z, Silverman E, DeMeo D, Choi A, Lee C, Elias J. Chitinase 3-like-1 Inhibits Innate Antitumor and Tissue Remodeling Immune Responses by Regulating CD47-SIRPα- and CD24-Siglec10-Mediated Phagocytosis. The Journal Of Immunology 2024, 213: 1279-1291. PMID: 39291933, DOI: 10.4049/jimmunol.2400035.Peer-Reviewed Original ResearchImmune checkpoint moleculesChronic obstructive pulmonary diseaseInhibit adaptive immune responsesAdaptive immune responsesInnate immune responseImmune responseInhibition of innate immune responsesInhibits T cell costimulationGeneration of adaptive immune responsesMacrophage phagocytosisInhibit innate immune responsesChitinase 3-like 1T cell costimulationEpithelial cell deathObstructive pulmonary diseaseCheckpoint moleculesPoor prognosisLung injuryInhibit macrophagesPulmonary diseaseCHI3L1Inflammation pathwaysCancerSHP-2 phosphataseCell deathTargeting TREX1 induces innate immune response in drug-resistant Small Cell Lung Cancer
Murayama T, Mahadevan N, Meador C, Ivanova E, Pan Y, Knelson E, Tani T, Nakayama J, Ma X, Thai T, Hung Y, Kim W, Watanabe H, Cai K, Hata A, Paweletz C, Barbie D, Cañadas I. Targeting TREX1 induces innate immune response in drug-resistant Small Cell Lung Cancer. Cancer Research Communications 2024, 4: 2399-2414. PMID: 39177280, PMCID: PMC11391691, DOI: 10.1158/2767-9764.crc-24-0360.Peer-Reviewed Original ResearchConceptsSmall-cell lung cancerPatient-derived xenograftsCells to chemotherapyLung cancerInnate immune responseImmune responseSmall cell lung cancerHuman SCLC tumorsSurvival of resistant cellsResponse to chemotherapyCell lung cancerEfficacy of chemotherapyRepair exonuclease 1Postchemotherapy samplesAntitumor immunitySCLC tumorsCold tumorsAvailable therapiesChromatin immunoprecipitation sequencingTransposase-accessible chromatinInduce immunogenicityChemotherapyResistant cellsTherapeutic strategiesTREX1 expressionIron Chelation Therapy Elicits Innate Immune Control of Metastatic Ovarian Cancer.
Sandoval T, Salvagno C, Chae C, Awasthi D, Giovanelli P, Marin Falco M, Hwang S, Teran-Cabanillas E, Suominen L, Yamazaki T, Kuo H, Moyer J, Martin M, Manohar J, Kim K, Sierra M, Ramos Y, Tan C, Emmanuelli A, Song M, Morales D, Zamarin D, Frey M, Cantillo E, Chapman-Davis E, Holcomb K, Mason C, Galluzzi L, Ni Zhou Z, Vaharautio A, Cloonan S, Cubillos-Ruiz J. Iron Chelation Therapy Elicits Innate Immune Control of Metastatic Ovarian Cancer. Cancer Discovery 2024, 14: 1901-1921. PMID: 39073085, PMCID: PMC11452292, DOI: 10.1158/2159-8290.cd-23-1451.Peer-Reviewed Original ResearchNatural killerOvarian cancerFDA-approved iron chelatorIron chelatorsAlternative immunotherapeutic strategyI interferonActivated natural killerSurvival of miceOvarian cancer cellsType I IFN responseProduction of type I interferonsHallmarks of cancerType I interferonImmunostimulatory stateInnate immune responseMetastatic diseaseImmunotherapeutic strategiesOverexpression of moleculesTumor microenvironmentDisease progressionImmunomodulatory effectsImmune responseCancer cellsConcomitant activationDNA damage responseC-reactive protein orchestrates acute allograft rejection in vascularized composite allotransplantation via selective activation of monocyte subsets
Kiefer J, Zeller J, Schneider L, Thomé J, McFadyen J, Hoerbrand I, Lang F, Deiss E, Bogner B, Schaefer A, Chevalier N, Horner V, Kreuzaler S, Kneser U, Kauke-Navarro M, Braig D, Woollard K, Pomahac B, Peter K, Eisenhardt S. C-reactive protein orchestrates acute allograft rejection in vascularized composite allotransplantation via selective activation of monocyte subsets. Journal Of Advanced Research 2024, 72: 401-420. PMID: 38992424, PMCID: PMC12147648, DOI: 10.1016/j.jare.2024.07.007.Peer-Reviewed Original ResearchAcute allograft rejectionC-reactive proteinVascularized Composite AllotransplantationAllograft rejectionAcute rejectionAllograft survivalGraft rejectionAttenuate acute allograft rejectionPreventing acute allograft rejectionImmune responseLong-term allograft survivalFacial Vascularized Composite AllotransplantationClinical allograft rejectionReduced allograft survivalChronic allograft rejectionIntravital imagingNon-classical monocytesMarkers of inflammationAcute-phase reactantsImmune-inflammatory reactionPro-inflammatory propertiesMononuclear phagocyte systemAcute-phase responseGraft infiltrationInnate immune responseHigh burden of viruses and bacterial pathobionts drives heightened nasal innate immunity in children
Watkins T, Green A, Amat J, Cheemarla N, Hänsel K, Lozano R, Dudgeon S, Germain G, Landry M, Schulz W, Foxman E. High burden of viruses and bacterial pathobionts drives heightened nasal innate immunity in children. Journal Of Experimental Medicine 2024, 221: e20230911. PMID: 38949638, PMCID: PMC11215523, DOI: 10.1084/jem.20230911.Peer-Reviewed Original ResearchConceptsBacterial pathobiontsRespiratory virusesBurden of virusesSARS-CoV-2Innate immune activationSARS-CoV-2 viral loadDynamic host-pathogen interactionsInnate immune responseViral coinfectionCytokine profileViral loadNasal virusImmune activationProinflammatory responseIL-1BNasopharyngeal samplesHost-pathogen interactionsImmune responseInterferon responsePathobiontsInnate immunityPaired samplesCXCL10Healthy 1-year-oldVirusComputational reassessment of RNA-seq data reveals key genes in active tuberculosis
Arya R, Shakya H, Chaurasia R, Kumar S, Vinetz J, Kim J. Computational reassessment of RNA-seq data reveals key genes in active tuberculosis. PLOS ONE 2024, 19: e0305582. PMID: 38935691, PMCID: PMC11210783, DOI: 10.1371/journal.pone.0305582.Peer-Reviewed Original ResearchConceptsMolecular Complex DetectionProtein-protein interactionsDeregulated genesGene OntologyRNA-seq dataGene Expression Omnibus (GEO) databaseIncreasing prevalence of multidrug-resistantGEO2R online toolPrevalence of multidrug resistancePathway enrichment analysisExpression levelsPatterns of variationGene expression levelsArea under curveInnate immune responseGene networksCore genesMicroarray datasetsSTRING databaseTranscript levelsEnrichment analysisGenesInterferon SignalingInterferon-gamma signalingResponse to Mtb infectionQuantitative correlation of ENPP1 pathogenic variants with disease phenotype
Ansh A, Stabach P, Ciccone C, Cao W, De La Cruz E, Sabbagh Y, Carpenter T, Ferreira C, Braddock D. Quantitative correlation of ENPP1 pathogenic variants with disease phenotype. Bone 2024, 186: 117136. PMID: 38806089, PMCID: PMC11227391, DOI: 10.1016/j.bone.2024.117136.Peer-Reviewed Original ResearchEctonucleotide pyrophosphatase/phosphodiesterase 1Pathogenic variantsDisease phenotypeEnzyme velocityCompound heterozygotesEnzyme activityVariable enzyme activityAutosomal dominant phenotypeHigh-throughput assayAutosomal recessive formInnate immune responseENPP1 variantsDamaging variantsENPP1 deficiencyCole diseaseDominant phenotypeAutosomal dominant diseaseCatalytic velocityRecessive formEnzymePhenotypeWT levelsBio-active moleculesClinical phenotypeDominant disease
2023
194 Investigating the role of bromodomain-containing 8 isoforms in the innate immune response of human airway epithelial cells
Browne J, Bruscia E, Garrison A, Harris A, Egan M. 194 Investigating the role of bromodomain-containing 8 isoforms in the innate immune response of human airway epithelial cells. Journal Of Cystic Fibrosis 2023, 22: s101. DOI: 10.1016/s1569-1993(23)01124-4.Peer-Reviewed Original ResearchHuman airway epithelial cellsAirway epithelial cellsInnate immune responseImmune responseEpithelial cellsHydroxychloroquine in Stage 1 Type 1 Diabetes.
Libman I, Bingley P, Becker D, Buckner J, DiMeglio L, Gitelman S, Greenbaum C, Haller M, Ismail H, Krischer J, Moore W, Moran A, Muir A, Raman V, Steck A, Toledo F, Wentworth J, Wherrett D, White P, You L, Herold K, Steck A, Greenbaum C, Lord S, Monzavi R, Katz L, Goland R, Muir A, Apperson E, DiMeglio L, Cummings E, Weinstock R, Gaglia J, Campbell F, Cabrera S, Nakhle S, English P, Huynh T, Liljenquist D, Moudiotis C, Duke S, Bosi E, Griffin K, Borg H, Lernmark A, Flynn D, Wilson D, Craig M, Moore W, Wherrett D, Tatovich D, Gitelman S, Philipson L, Haller M, Knip M, Tsalikian E, Baidal D, Thomas I, Moran A, Libman I, White P, Raman V, Raleigh Z, Solorzano C, Rodriguez H, Russell W, So M, Colman P, Couper J, Sherr J. Hydroxychloroquine in Stage 1 Type 1 Diabetes. Diabetes Care 2023, 46: 2035-2043. PMID: 37708415, PMCID: PMC10620539, DOI: 10.2337/dc23-1096.Peer-Reviewed Original ResearchConceptsAnnual ophthalmologic examinationsMedian Follow-UpStage 1 diseaseHydroxychloroquine armPreplanned secondary analysisAutoantibodies to GADData Safety Monitoring BoardAnti-insulin autoantibodiesSafety monitoring boardType 1 diabetesInnate immune responseOphthalmologic examinationPositive autoantibodiesAnti-GADHydroxychloroquine treatmentMonth 6Oral glucoseFollow-upDrug treatmentImmune responseHydroxychloroquineAutoantibodiesTransient decreaseMonitoring boardReduced titersEndometrial responses to bacterial and viral infection: a scoping review.
Lindsay C, Potter J, Grimshaw A, Abrahams V, Tong M. Endometrial responses to bacterial and viral infection: a scoping review. Human Reproduction Update 2023, 29: 675-693. PMID: 37290428, PMCID: PMC10477945, DOI: 10.1093/humupd/dmad013.Peer-Reviewed Original ResearchConceptsEndometrial responseViral infectionUterus/endometriumFull-text studiesInnate immune sensingInnate immune responseFree-text termsEmbase/MedlineIntrauterine infectionObstetric complicationsEndometrial productionCochrane LibraryFuture studiesImplantation failureNeisseria gonorrheaImmune cellsMost infectionsImmune responseUterine functionChlamydia trachomatisAnimal modelsImmune sensingEndometriumZika virusMajority of studiesSpatial characterization and quantification of CD40 expression across cancer types
Bates K, Vathiotis I, MacNeil T, Ahmed F, Aung T, Katlinskaya Y, Bhattacharya S, Psyrri A, Yea S, Parkes A, Sadraei N, Roychoudhury S, Rimm D, Gavrielatou N. Spatial characterization and quantification of CD40 expression across cancer types. BMC Cancer 2023, 23: 220. PMID: 36894898, PMCID: PMC9996913, DOI: 10.1186/s12885-023-10650-7.Peer-Reviewed Original ResearchConceptsCD40 expressionSolid tumorsTumor cellsQuantitative immunofluorescencePatient cohortPancreatic cancerCancer typesExpression of CD40Large patient cohortOvarian cancer populationTissue microarray formatDifferent solid tumorsInnate immune responseTNF receptor family membersAvailable patient cohortNSCLC populationOverall survivalPrognostic impactReceptor family membersCancer populationAdenocarcinoma populationImmune cellsOvarian cancerPancreatic adenocarcinomaPositivity rate
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply