2025
A Bayesian Approach to the G‐Formula via Iterative Conditional Regression
Liu R, Hu L, Wilson F, Warren J, Li F. A Bayesian Approach to the G‐Formula via Iterative Conditional Regression. Statistics In Medicine 2025, 44: e70123. PMID: 40476299, PMCID: PMC12184534, DOI: 10.1002/sim.70123.Peer-Reviewed Original ResearchConceptsCausal effect estimationTime-varying covariatesModel misspecification biasBayesian approachReal world data examplesG-formulaAverage causal effect estimationTime-varying treatmentsBayesian additive regression treesAverage causal effectAdditive regression treesConditional expectationOutcome regressionConditional distributionJoint distributionData examplesPosterior distributionMisspecification biasParametric regressionSimulation studyEffect estimatesSampling algorithmAlgorithm formulaCausal effectsFlexible machine learning techniquesDisruption to test scores after hurricanes in the United States
Meltzer G, Anderson G, Xie X, Casey J, Schwartz J, Bell M, Van Horne Y, Fox J, Kioumourtzoglou M, Parks R. Disruption to test scores after hurricanes in the United States. Environmental Research Health 2025, 3: 025003. PMID: 40034829, PMCID: PMC11874716, DOI: 10.1088/2752-5309/adb32b.Peer-Reviewed Original ResearchReading/language artsTest scoresLong-term test scoresEducational attainmentSocioeconomically disadvantaged studentsStandardized test scoresMiddle school studentsHierarchical linear modelingBayesian hierarchical linear modelDisadvantaged studentsAcademic achievementMath scoresEducational performanceSchool yearSchool studentsTime-varying covariatesCollege-educated adultsGrade cohortsTropical cyclone exposureHurricane exposureVulnerable populationsUnited StatesStudentsHigher scoresDisaster preparedness
2024
A machine learning framework to adjust for learning effects in medical device safety evaluation
Koola J, Ramesh K, Mao J, Ahn M, Davis S, Govindarajulu U, Perkins A, Westerman D, Ssemaganda H, Speroff T, Ohno-Machado L, Ramsay C, Sedrakyan A, Resnic F, Matheny M. A machine learning framework to adjust for learning effects in medical device safety evaluation. Journal Of The American Medical Informatics Association 2024, 32: 206-217. PMID: 39471493, PMCID: PMC11648715, DOI: 10.1093/jamia/ocae273.Peer-Reviewed Original ResearchMachine Learning FrameworkSynthetic datasetsLearning frameworkMachine learningCapacity of MLLearning effectFeature correlationDepartment of Veterans AffairsSynthetic dataData generationAbsence of learning effectsTraditional statistical methodsML methodsSuperior performanceDatasetSafety signal detectionSignal detectionDevice signalsVeterans AffairsTime-varying covariatesLearningMachinePhysician experienceLimitations of traditional statistical methodsMedical device post-market surveillanceDeveloping deep learning-based strategies to predict the risk of hepatocellular carcinoma among patients with nonalcoholic fatty liver disease from electronic health records
Li Z, Lan L, Zhou Y, Li R, Chavin K, Xu H, Li L, Shih D, Zheng W. Developing deep learning-based strategies to predict the risk of hepatocellular carcinoma among patients with nonalcoholic fatty liver disease from electronic health records. Journal Of Biomedical Informatics 2024, 152: 104626. PMID: 38521180, DOI: 10.1016/j.jbi.2024.104626.Peer-Reviewed Original ResearchDeep learning modelsElectronic health recordsHCC risk predictionHealth recordsTime-varying covariatesLearning modelsElectronic health record dataRisk predictionHealth record dataAccuracy of deep learning modelsDeep learning-based strategyCovariate imbalanceDisease prediction tasksLearning-based strategyDeep learning performanceDisease risk predictionEHR databaseClassification problemLength of follow-upTransfer learningFatty liver diseasePrediction taskCarcinoma riskModel trainingRecord data
2023
Association between F2-Isoprostane Metabolites and Weight Change in Older Women: A Longitudinal Analysis
Zhao Y, Nogueira M, Chen Q, Dai Q, Cai Q, Wen W, Lan Q, Rothman N, Gao Y, Shu X, Zheng W, Milne G, Yang G. Association between F2-Isoprostane Metabolites and Weight Change in Older Women: A Longitudinal Analysis. Gerontology 2023, 70: 134-142. PMID: 37967546, PMCID: PMC10922451, DOI: 10.1159/000534258.Peer-Reviewed Original ResearchConceptsF2-IsoP-MAssociated with subsequent weight lossOlder womenMeasures of anthropometryWeight changeF2-IsoPsIncreased all-cause mortalityF2-isoprostanesWeight lossFollow-upLowest quartile groupProspective cohort studyAll-Cause MortalityPhysical activityDetermination of body weightProlonged follow-upTime-varying covariatesLinear mixed-effects modelsFollow-up periodInverse associationLongitudinal associationsPercentage of weight changeHealth issuesCohort studyMiddle-agedModelling anticoagulation and health-related quality of life in those with atrial fibrillation: a secondary analysis of AFFIRM
Stulberg E, Delic A, Zheutlin A, Steinberg B, Yaghi S, Sharma R, de Havenon A. Modelling anticoagulation and health-related quality of life in those with atrial fibrillation: a secondary analysis of AFFIRM. Clinical Research In Cardiology 2023, 113: 1200-1210. PMID: 37962572, PMCID: PMC11785410, DOI: 10.1007/s00392-023-02335-9.Peer-Reviewed Original ResearchHealth-related qualityTime-varying confoundingAtrial fibrillationTime-varying covariatesSecondary analysisSelection biasAssociation of anticoagulationAssociation of warfarinAtrial Fibrillation FollowAge-stratified analysisLife substudyWarfarin useBetter HRQoLPrimary endpointTrial qualityHigher HRQoLStudy baselineEffect modificationStratified analysisAnticoagulationHRQoLInverse probabilityFibrillationStudy periodTime pointsIntensive Induction Chemotherapy Vs Hypomethylating Agents + Venetoclax (HMA/VEN) in NPM1-Mutant Newly Diagnosed Acute Myeloid Leukemia (AML) - a Multicenter Cohort Study
Bewersdorf J, Shimony S, Shallis R, Liu Y, Schaefer E, Zeidan A, Goldberg A, Stein E, Marcucci G, Lindsley R, Chen E, Ramos J, Stein A, DeAngelo D, Neuberg D, Stone R, Ball B, Stahl M. Intensive Induction Chemotherapy Vs Hypomethylating Agents + Venetoclax (HMA/VEN) in NPM1-Mutant Newly Diagnosed Acute Myeloid Leukemia (AML) - a Multicenter Cohort Study. Blood 2023, 142: 2964. DOI: 10.1182/blood-2023-174285.Peer-Reviewed Original ResearchNPM1 mutant acute myeloid leukemiaIntensive induction chemotherapyAcute myeloid leukemiaComposite complete responseMedian overall survivalOverall survivalComplete responseAllo-SCTPt ageAbnormal cytogeneticsCohort studyMyelodysplastic syndromePolymerase chain reactionClinical trialsMyeloid leukemiaNPM1 mutationsLarge multicenter retrospective cohort studyTime-varying covariatesMulticenter retrospective cohort studyAllogeneic stem cell transplantationPrior myelodysplastic syndromeMulticenter cohort studyRetrospective cohort studyStem cell transplantationPrior chemotherapy exposure
2021
Exposure to Primary Air Pollutants Generated by Highway Traffic and Daily Mortality Risk in Near-Road Communities: A Case-Crossover Study
Filigrana P, Milando C, Batterman S, Levy J, Mukherjee B, Pedde M, Szpiro A, Adar S. Exposure to Primary Air Pollutants Generated by Highway Traffic and Daily Mortality Risk in Near-Road Communities: A Case-Crossover Study. American Journal Of Epidemiology 2021, 191: 63-74. PMID: 34347034, DOI: 10.1093/aje/kwab215.Peer-Reviewed Original ResearchConceptsNear-road populationsAir pollutionMortality riskExposure to traffic-related air pollutionAverage PM2.5 exposureTraffic-generated air pollutionNear-road communitiesResearch LINE sourceConcentrations of PM2.5Traffic-related air pollutionCase-crossover designPrimary air pollutantsConditional logistic regressionPuget Sound area of Washington StateDaily mortality riskCase-crossoverTime-varying covariatesCerebrovascular mortalityPM2.5 exposurePrimary pollutantsQuantify associationsAerodynamic diameterShorter averaging periodsPM2.5PollutionRisk of Mortality After an Arterial Ischemic Event Among Intracerebral Hemorrhage Survivors
Parasram M, Parikh NS, Merkler AE, Falcone GJ, Sheth KN, Navi BB, Kamel H, Zhang C, Murthy SB. Risk of Mortality After an Arterial Ischemic Event Among Intracerebral Hemorrhage Survivors. The Neurohospitalist 2021, 12: 19-23. PMID: 34950382, PMCID: PMC8689534, DOI: 10.1177/19418744211026709.Peer-Reviewed Original ResearchArterial ischemic eventsRisk of deathIschemic eventsIntracerebral hemorrhageMyocardial infarctionIschemic strokeMarginal structural modelsICH patientsMedicare beneficiariesNon-traumatic intracerebral hemorrhageICD-9-CM diagnosis codesAcute ischemic strokeRetrospective cohort studySubsequent ischemic strokeIntracerebral hemorrhage survivorsRisk of mortalityICH survivorsMedian followElderly patientsCohort studyDiagnosis codesClaims dataMortality riskMortality rateTime-varying covariatesAssociation of Preeclampsia With Incident Stroke in Later Life Among Women in the Framingham Heart Study
de Havenon A, Delic A, Stulberg E, Sheibani N, Stoddard G, Hanson H, Theilen L. Association of Preeclampsia With Incident Stroke in Later Life Among Women in the Framingham Heart Study. JAMA Network Open 2021, 4: e215077. PMID: 33900402, PMCID: PMC8076961, DOI: 10.1001/jamanetworkopen.2021.5077.Peer-Reviewed Original ResearchConceptsHistory of preeclampsiaVascular risk factorsIncident strokeRisk factorsFramingham Heart StudyMarginal structural modelsCohort studyStroke incidenceRelative riskHeart StudyLater lifeTime-varying covariatesMidlife vascular risk factorsPopulation-based cohort studyHigher diastolic blood pressureAbsence of preeclampsiaCholesterol-lowering medicationsDiastolic blood pressureAge 45 yearsAssociation of preeclampsiaBlood pressureMore pregnanciesStudy visitPreeclampsiaMAIN OUTCOME
2019
159-LB: Relationship between Hypoglycaemia (Hypo), Outcomes and Empagliflozin (EMPA) Treatment Effect in EMPA-REG OUTCOME
ZINMAN B, FITCHETT D, MATTHEUS M, WANNER C, GEORGE J, VEDIN O, INZUCCHI S, JOHANSEN O. 159-LB: Relationship between Hypoglycaemia (Hypo), Outcomes and Empagliflozin (EMPA) Treatment Effect in EMPA-REG OUTCOME. Diabetes 2019, 68 DOI: 10.2337/db19-159-lb.Peer-Reviewed Original ResearchEMPA-REG OUTCOMEAdverse eventsBoehringer Ingelheim PharmaceuticalsPlasma glucoseMyocardial infarctionCause deathCV outcomesJanssen PharmaceuticalsType 2 diabetes mellitusEli LillyRisk of MIHeart failure hospitalizationRisk of HHFCardio-protective effectsCox regression modelAdvisory PanelCV deathCV diseaseFailure hospitalizationPlacebo groupDiabetes mellitusDohme Corp.Novo Nordisk A/STime-varying covariatesMerck Sharp
2017
Restricting Back Pain and Subsequent Disability in Activities of Daily Living Among Community-Living Older Adults
Makris UE, Weinreich MA, Fraenkel L, Han L, Leo-Summers L, Gill TM. Restricting Back Pain and Subsequent Disability in Activities of Daily Living Among Community-Living Older Adults. Journal Of Aging And Health 2017, 30: 1482-1494. PMID: 28863724, PMCID: PMC5832514, DOI: 10.1177/0898264317721555.Peer-Reviewed Original ResearchConceptsCommunity-living older adultsBack painSubsequent disabilityIADL disabilityOlder adultsDaily livingProspective cohort studyCohort studyHazard ratioInstrumental activitiesPainCox modelSubsequent burdenTime-varying covariatesMonthly interviewsStrong associationDisabilityAdultsEADLAssociationIADLLivingActivityMonths
2016
Efavirenz versus boosted atazanavir-containing regimens and immunologic, virologic, and clinical outcomes
Cain LE, Caniglia EC, Phillips A, Olson A, Muga R, Pérez-Hoyos S, Abgrall S, Costagliola D, Rubio R, Jarrín I, Bucher H, Fehr J, van Sighem A, Reiss P, Dabis F, Vandenhende MA, Logan R, Robins J, Sterne JAC, Justice A, Tate J, Touloumi G, Paparizos V, Esteve A, Casabona J, Seng R, Meyer L, Jose S, Sabin C, Hernán MA. Efavirenz versus boosted atazanavir-containing regimens and immunologic, virologic, and clinical outcomes. Medicine 2016, 95: e5133. PMID: 27741139, PMCID: PMC5072966, DOI: 10.1097/md.0000000000005133.Peer-Reviewed Original ResearchConceptsCD4 cell countEfavirenz regimenVirologic failureVirologic outcomesSurvival differencesNucleoside reverse transcriptase inhibitor (NRTI) backboneCell countReverse transcriptase inhibitor backboneAtazanavir-containing regimensAIDS-free survivalHuman immunodeficiency virusImmune deficiency syndromeHIV-CAUSAL CollaborationAtazanavir regimenHazard ratioClinical outcomesImmunodeficiency virusProspective studyDeficiency syndromeMean changeRegimensEfavirenzTime-varying covariatesInhibitor backboneRegimenFine Particulate Matter and Emergency Room Visits for Respiratory Illness. Effect Modification by Oxidative Potential
Weichenthal SA, Lavigne E, Evans GJ, Pollitt K, Burnett RT. Fine Particulate Matter and Emergency Room Visits for Respiratory Illness. Effect Modification by Oxidative Potential. American Journal Of Respiratory And Critical Care Medicine 2016, 194: 577-86. PMID: 26963193, DOI: 10.1164/rccm.201512-2434oc.Peer-Reviewed Original ResearchConceptsEmergency room visitsAcute respiratory morbidityRespiratory illnessRoom visitsImpact of PM2.5Respiratory morbidityChronic obstructive pulmonary diseaseAcute respiratory illnessObstructive pulmonary diseaseFine particulate air pollutionCases of asthmaConditional logistic regressionCase-crossover studyParticulate air pollutionRespiratory outcomesPulmonary diseaseEmergency roomEffect modificationRespiratory tractDaily air pollution dataInterquartile changeTime-varying covariatesOxidative burdenIllnessLogistic regressionTransitions in Riding With an Alcohol/Drug-Impaired Driver From Adolescence to Emerging Adulthood in the United States.
Vaca FE, Li K, Hingson R, Simons-Morton BG. Transitions in Riding With an Alcohol/Drug-Impaired Driver From Adolescence to Emerging Adulthood in the United States. Journal Of Studies On Alcohol And Drugs 2016, 77: 77-85. PMID: 26751357, PMCID: PMC4711323, DOI: 10.15288/jsad.2016.77.77.Peer-Reviewed Original ResearchConceptsHeavy episodic drinkingDrug-impaired driversSubstance useEpisodic drinkingAlcohol/substance useNEXT Generation Health StudyHarm reduction strategiesPredictors of changePost-high school yearsHealth StudyIndividual substance useRepresentative cohortTime-varying covariatesDrinkingCohortYearsMonths
2015
Using observational data to emulate a randomized trial of dynamic treatment-switching strategies: an application to antiretroviral therapy
Cain LE, Saag MS, Petersen M, May MT, Ingle SM, Logan R, Robins JM, Abgrall S, Shepherd BE, Deeks SG, Gill M, Touloumi G, Vourli G, Dabis F, Vandenhende MA, Reiss P, van Sighem A, Samji H, Hogg RS, Rybniker J, Sabin CA, Jose S, del Amo J, Moreno S, Rodríguez B, Cozzi-Lepri A, Boswell SL, Stephan C, Pérez-Hoyos S, Jarrin I, Guest JL, Monforte A, Antinori A, Moore R, Campbell CN, Casabona J, Meyer L, Seng R, Phillips AN, Bucher HC, Egger M, Mugavero MJ, Haubrich R, Geng EH, Olson A, Eron JJ, Napravnik S, Kitahata MM, Van Rompaey SE, Teira R, Justice AC, Tate JP, Costagliola D, Sterne JA, Hernán MA, Systems A. Using observational data to emulate a randomized trial of dynamic treatment-switching strategies: an application to antiretroviral therapy. International Journal Of Epidemiology 2015, 45: 2038-2049. PMID: 26721599, PMCID: PMC5841611, DOI: 10.1093/ije/dyv295.Peer-Reviewed Original ResearchConceptsAntiretroviral therapyCopies/Antiretroviral Therapy Cohort CollaborationTime-varying covariatesTight control groupAdjusted hazard ratioAntiretroviral therapy regimenAIDS Research NetworkIntegrated Clinical SystemsHIV-CAUSAL CollaborationDeath eventsCohort CollaborationHazard ratioTherapy regimenRandomized trialsInverse probability weightingInclusion criteriaMortality analysisClinical treatmentAIDSTherapyDeath analysisDeathTrialsComparative effects
2002
‘Intention-to-treat’ meets ‘missing data’: implications of alternate strategies for analyzing clinical trials data
Nich C, Carroll KM. ‘Intention-to-treat’ meets ‘missing data’: implications of alternate strategies for analyzing clinical trials data. Drug And Alcohol Dependence 2002, 68: 121-130. PMID: 12234641, PMCID: PMC3651592, DOI: 10.1016/s0376-8716(02)00111-4.Peer-Reviewed Original ResearchConceptsEffectiveness of treatmentTreat analysisClinical trialsRandomized clinical trialsClinical trial dataStudy treatmentProtocol violationsTreat strategyTreatment retentionPoint of dropoutTime-varying covariatesTrial dataCocaine dependenceIntended durationParticipant dropoutRelative efficacyTrialsTreatmentMultiple analytic strategiesRetention outcomesDurationFull durationStrategy 1Analytic strategiesSubstantial levels
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply