2023
Dysregulation of the endogenous cannabinoid system following opioid exposure
Mohammad Aghaei A, Saali A, Canas M, Weleff J, D'Souza D, Angarita G, Bassir Nia A. Dysregulation of the endogenous cannabinoid system following opioid exposure. Psychiatry Research 2023, 330: 115586. PMID: 37931479, PMCID: PMC10842415, DOI: 10.1016/j.psychres.2023.115586.Peer-Reviewed Original ResearchConceptsEndocannabinoid systemECS componentsBrain regionsNovel neurobiological targetsTreatment of OUDEndogenous opioid systemOpioid-related deathsEndogenous cannabinoid systemSpecific brain regionsECS dysregulationOpioid exposureOUD treatmentOpioid systemCannabinoid systemNeurobiological targetsNew medicationsPreclinical literatureCannabinoid receptorsEndogenous ligandTherapeutic potentialStudy typePresent potential targetsExposure protocolOpioidsPreclinical research
2020
Does cannabis alleviate tinnitus? A review of the current literature
Narwani V, Bourdillon A, Nalamada K, Manes RP, Hildrew DM. Does cannabis alleviate tinnitus? A review of the current literature. Laryngoscope Investigative Otolaryngology 2020, 5: 1147-1155. PMID: 33364406, PMCID: PMC7752070, DOI: 10.1002/lio2.479.Peer-Reviewed Original ResearchAnimal studiesClinical cross-over studyPathophysiology of tinnitusUse of cannabinoidsCannabinoid receptor expressionFrequency of tinnitusCross-over studySmall cohort studiesLarger cross-sectional survey studyReview of animalCross-sectional survey studyDose-dependent relationshipSurvey studyCohort studyCase reportCochlear nucleusCannabinoid agentsReceptor expressionClinical dataCannabinoid receptorsTinnitusGeneral populationEndocannabinoid pathwayHuman studiesTherapeutic interventionsChapter 6 Psychology + human behavior
Pearlson G. Chapter 6 Psychology + human behavior. 2020, 101-134. DOI: 10.1016/b978-0-12-818174-4.00006-9.Peer-Reviewed Original ResearchSense of selfDrug's long-term effectsPsychological phenomenaBrain circuitsCannabis useHuman behaviorLong-term effectsMental functionsEveryday examplesDrug-induced alterationsCannabisPsychologyIQDrug effectsRecreational drugsMoodFeelingsMarijuanaPsychedelicsSelfEcstasyBehaviorPsychosisConsciousnessCannabinoid receptors
2019
Endocannabinoid System Alterations in Posttraumatic Stress Disorder: A Review of Developmental and Accumulative Effects of Trauma
Nia A, Bender R, Harpaz-Rotem I. Endocannabinoid System Alterations in Posttraumatic Stress Disorder: A Review of Developmental and Accumulative Effects of Trauma. Chronic Stress 2019, 3: 2470547019864096. PMID: 31660473, PMCID: PMC6816276, DOI: 10.1177/2470547019864096.Peer-Reviewed Original ResearchEndocannabinoid system alterationsEndocannabinoid systemSystem alterationsEndocannabinoid ligandsProlonged stressPosttraumatic stress disorderImportant sex differencesClinical studiesPsychiatric symptomsCannabinoid receptorsHuman studiesChronic stressStress disorderTraumaDecreased levelsDevelopmental ageSex differencesCurrent literatureReceptorsAlterationsAccumulative effectReviewSymptomsLevels
2017
Endocannabinoid Signaling in the Control of Social Behavior
Wei D, Allsop S, Tye K, Piomelli D. Endocannabinoid Signaling in the Control of Social Behavior. Trends In Neurosciences 2017, 40: 385-396. PMID: 28554687, PMCID: PMC5699224, DOI: 10.1016/j.tins.2017.04.005.Peer-Reviewed Original ResearchConceptsSocial behaviorEndocannabinoid signalingG-protein-coupled cannabinoid receptorsEndocannabinoid signaling systemComplex social groupsSocial anxietySocial impairmentNeural basisSocial rewardsCannabinoid receptorsNeural processesEndocannabinoidAnimal modelsEmergent insightsAnxietyRewardBehaviorSocial groupsImpairmentBrainSignaling systemAgonistsMammalian speciesReceptors
2014
Cannabinoid receptor expression in femora and tibiae of C57/blk6 mice fed DHA and relationship to bone ash and BMC (1032.2)
Kim J, Insogna K, Watkins B. Cannabinoid receptor expression in femora and tibiae of C57/blk6 mice fed DHA and relationship to bone ash and BMC (1032.2). The FASEB Journal 2014, 28 DOI: 10.1096/fasebj.28.1_supplement.1032.2.Peer-Reviewed Original ResearchEndocannabinoid systemBody weightFed miceHigher BMCMice fed DHACannabinoid receptor expressionDiet fed miceMost peripheral tissuesDHA feedingReceptor expressionCB2 expressionPeripheral tissuesSkeletal metabolismCannabinoid receptorsTibia ash weightCurrent epidemicBone remodelingDay 118MiceControl lipidHigh expressionFemurTibia ashMouse femurAsh weight
2013
Moderation of antipsychotic-induced weight gain by energy balance gene variants in the RUPP autism network risperidone studies
Nurmi E, Spilman S, Whelan F, Scahill L, Aman M, McDougle C, Arnold L, Handen B, Johnson C, Sukhodolsky D, Posey D, Lecavalier L, Stigler K, Ritz L, Tierney E, Vitiello B, McCracken J. Moderation of antipsychotic-induced weight gain by energy balance gene variants in the RUPP autism network risperidone studies. Translational Psychiatry 2013, 3: e274-e274. PMID: 23799528, PMCID: PMC3693401, DOI: 10.1038/tp.2013.26.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAlpha-Ketoglutarate-Dependent Dioxygenase FTOAmidohydrolasesAntipsychotic AgentsBody WeightChildChild Development Disorders, PervasiveChild, PreschoolFemaleGenetic Predisposition to DiseaseHumansLeptinMaleProteinsReceptor, Cannabinoid, CB1Receptor, Melanocortin, Type 4RisperidoneWeight GainConceptsWeight gainAntipsychotic-associated weight gainAntipsychotic-Induced Weight GainEndocannabinoid metabolic enzymesPrior adult studiesTreatment-naive populationExcessive weight gainHigh-risk groupFatty acid amide hydrolaseTreatment of irritabilityChildren/adolescentsRisperidone studyAntipsychotic exposureAdverse eventsPlasma levelsRisk groupsAdult studiesCannabinoid receptorsNetwork trialAmide hydrolasePharmacogenetic basisGene variantsSignificant riskTrend associationNaive population
2010
Dopaminergic Modulation of Endocannabinoid-Mediated Plasticity at GABAergic Synapses in the Prefrontal Cortex
Chiu C, Puente N, Grandes P, Castillo P. Dopaminergic Modulation of Endocannabinoid-Mediated Plasticity at GABAergic Synapses in the Prefrontal Cortex. Journal Of Neuroscience 2010, 30: 7236-7248. PMID: 20505090, PMCID: PMC2905527, DOI: 10.1523/jneurosci.0736-10.2010.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBenzoxazinesCannabinoid Receptor ModulatorsChelating AgentsDopamineDopamine AgentsEgtazic AcidEndocannabinoidsFemalegamma-Aminobutyric AcidIn Vitro TechniquesInhibitory Postsynaptic PotentialsIsoquinolinesMembrane PotentialsMiceMice, Inbred C57BLMice, KnockoutMicroscopy, Electron, TransmissionMorpholinesNaphthalenesNeuronal PlasticityPatch-Clamp TechniquesPiperidinesPrefrontal CortexProtein Kinase InhibitorsPyrazolesRatsRats, WistarReceptor, Cannabinoid, CB1Receptors, Dopamine D2Silver StainingSulfonamidesSynapsesConceptsPrefrontal cortexI-LTDECB-mediated long-term depressionLong-term depression of inhibitory transmissionPrefrontal cortex of ratsDopamine type 2 receptorPrefrontal cortical functionEndocannabinoid-mediated plasticityEndogenous cannabinoid receptorsGroup I metabotropic glutamate receptorsCannabinoid receptor systemSuppress GABA releaseECB signalingECB-LTDWorking memoryDopaminergic modulationCannabinoid receptorsBrain regionsGABA releaseDopamineEmotional learningCortical functionInhibitory transmissionGABAergic synapsesElectrophysiological evidenceAnti-inflammatory property of the cannabinoid receptor-2-selective agonist in spinal cord injury (35.11)
Adhikary S, Hongbo L, Skarica M, Tuma R, Ganea D. Anti-inflammatory property of the cannabinoid receptor-2-selective agonist in spinal cord injury (35.11). The Journal Of Immunology 2010, 184: 35.11-35.11. DOI: 10.4049/jimmunol.184.supp.35.11.Peer-Reviewed Original ResearchAcute spinal cord injurySpinal cord injuryAgonist treatmentImmune cellsCannabinoid receptor-2 selective agonistCord injurySpinal cordAnimal models of CNS disordersContusion model of spinal cord injuryInfiltration of immune cellsModels of CNS disordersT-cell-activating cytokinesTreat neuropathic painExpression of inflammatory moleculesModel of spinal cord injuryModel of acute spinal cord injuryInflammatory immune cellsToll-like receptorsO-1966Neuropathic painCannabinoid receptorsBladder functionRecovery of motorIL-23Anti-inflammatory properties
2009
Cannabinoid Hyperemesis Relieved by Compulsive Bathing
Chang Y, Windish D. Cannabinoid Hyperemesis Relieved by Compulsive Bathing. Mayo Clinic Proceedings 2009, 84: 76-78. PMID: 19121257, PMCID: PMC2664574, DOI: 10.4065/84.1.76.Peer-Reviewed Original ResearchConceptsCannabinoid hyperemesisLong-term marijuana useType 1 cannabinoid receptorInhibitory effectIntestinal nerve plexusesUnusual adverse effectMarijuana useCompulsive bathingGastrointestinal motilityNerve plexusClinical syndromeCannabinoid receptorsPatient needsHyperemesisHot showersAdverse effectsBathing behaviourThermoregulatory roleMarijuana usersVomitingEndocannabinoidsPlexusSyndromeReceptors
2007
Input-specific plasticity at excitatory synapses mediated by endocannabinoids in the dentate gyrus
Chiu C, Castillo P. Input-specific plasticity at excitatory synapses mediated by endocannabinoids in the dentate gyrus. Neuropharmacology 2007, 54: 68-78. PMID: 17706254, PMCID: PMC2225485, DOI: 10.1016/j.neuropharm.2007.06.026.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornArachidonic AcidsBenzoxazinesCalciumCalcium Channel BlockersCannabinoid Receptor ModulatorsCholinergic AgentsDentate GyrusElectric StimulationEndocannabinoidsExcitatory Postsynaptic PotentialsGlyceridesIn Vitro TechniquesMiceMice, Inbred C57BLMice, KnockoutMorpholinesNaphthalenesNeural PathwaysNeuronal PlasticityNeuronsPatch-Clamp TechniquesRatsRats, WistarReceptor, Cannabinoid, CB1ConceptsECB signalingDentate gyrusDiacyglycerol lipaseGroup I metabotropic glutamate receptorsDepress excitatory synaptic transmissionSuppression of excitationBreakdown of anandamideExcitatory synapsesMedial perforant pathAbundant eCBECB-LTDECB releaseCannabinoid receptorsExcitatory synaptic transmissionBrain structuresGlutamatergic inputsEntorhinal cortexSynaptic plasticityGlutamate receptorsPerforant pathDentate granule cellsDentateEndocannabinoidGyrusAnandamideHardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity
Berghuis P, Rajnicek AM, Morozov YM, Ross RA, Mulder J, Urbán G, Monory K, Marsicano G, Matteoli M, Canty A, Irving AJ, Katona I, Yanagawa Y, Rakic P, Lutz B, Mackie K, Harkany T. Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity. Science 2007, 316: 1212-1216. PMID: 17525344, DOI: 10.1126/science.1137406.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCannabinoid Receptor ModulatorsCell MovementCells, CulturedCerebral CortexEndocannabinoidsgamma-Aminobutyric AcidGrowth ConesIn Situ HybridizationInterneuronsMiceMice, Inbred C57BLMicroscopy, ConfocalRatsRats, Sprague-DawleyReceptor, Cannabinoid, CB1Signal TransductionStem CellsSynapsesUltrasonographyXenopus laevisXenopus ProteinsConceptsAxonal growth conesGABAergic interneuronsEndocannabinoid signalingXenopus laevis spinal neuronsCortical GABAergic interneuronsCentral nervous system developmentGrowth conesAxon guidance cuesSpinal neuronsNervous system developmentCannabinoid receptorsLate gestationNeuronal connectivityRodent cortexInterneuronsEndocannabinoidsGuidance cuesTarget selectionSignalingGestationCortexSynaptogenesisNeuronsBrainReceptors
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply