2021
Genetic variation in endocannabinoid signaling is associated with differential network‐level functional connectivity in youth
Sisk LM, Rapuano KM, Conley MI, Greene AS, Horien C, Rosenberg MD, Scheinost D, Constable RT, Glatt CE, Casey BJ, Gee DG. Genetic variation in endocannabinoid signaling is associated with differential network‐level functional connectivity in youth. Journal Of Neuroscience Research 2021, 100: 731-743. PMID: 34496065, PMCID: PMC8866205, DOI: 10.1002/jnr.24946.Peer-Reviewed Original ResearchConceptsEndocannabinoid signalingAllele carriersLower anxiety symptomsC385A polymorphismNetwork-level functional connectivityEnhanced endocannabinoid signalingLarge-scale resting-state brain networksAnxiety symptomsResting-state brain networksGenotype-associated differencesBrain networksFronto-amygdala connectivityFunctional connectionsCognitive Development StudyNetwork-level changesPotential protective factorsAdolescent Brain Cognitive Development (ABCD) studyEndocannabinoid systemNetwork-level differencesYounger ageFunctional connectivityProtective factorsNeural phenotypesAnxiety disordersNeural connectivityLipidomic Profiles of Plasma Exosomes Identify Candidate Biomarkers for Early Detection of Hepatocellular Carcinoma in Patients with Cirrhosis
Sanchez J, Jiao J, Kwan S, Veillon L, Warmoes M, Tan L, Odewole M, Rich N, Wei P, Lorenzi P, Singal A, Beretta L. Lipidomic Profiles of Plasma Exosomes Identify Candidate Biomarkers for Early Detection of Hepatocellular Carcinoma in Patients with Cirrhosis. Cancer Prevention Research 2021, 14: canprevres.0612.2021. PMID: 34253566, PMCID: PMC8546639, DOI: 10.1158/1940-6207.capr-20-0612.Peer-Reviewed Original ResearchConceptsLogistic regression analysisHCC exosomesCirrhotic patientsEarly detectionHepatocellular carcinomaCandidate biomarkersTumor developmentNoninvasive diagnostic biomarkersRegression analysisHCC surveillanceLipid profileEndocannabinoid signalingHCC diagnosisNovel biomarkersLipid classesDiagnostic biomarkersPlasma exosomesLipidomic profilesGlycerophospholipid metabolismHCCPatientsBiomarkersUntargeted lipidomicsCarcinomaDifferential effectsAssociation of Cannabis Use During Adolescence With Neurodevelopment
Albaugh MD, Ottino-Gonzalez J, Sidwell A, Lepage C, Juliano A, Owens MM, Chaarani B, Spechler P, Fontaine N, Rioux P, Lewis L, Jeon S, Evans A, D’Souza D, Radhakrishnan R, Banaschewski T, Bokde ALW, Quinlan EB, Conrod P, Desrivières S, Flor H, Grigis A, Gowland P, Heinz A, Ittermann B, Martinot JL, Martinot M, Nees F, Orfanos D, Paus T, Poustka L, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Potter A, Garavan H. Association of Cannabis Use During Adolescence With Neurodevelopment. JAMA Psychiatry 2021, 78: 1031-1040. PMID: 34132750, PMCID: PMC8209561, DOI: 10.1001/jamapsychiatry.2021.1258.Peer-Reviewed Original ResearchCannabis useAltered neurodevelopmentAge-related cortical thinningBaseline cortical thicknessAge-related thinningDose-dependent fashionRight prefrontal cortexMR imagesEuropean School Survey ProjectCortical thickness developmentCohort studyCortical thinningStudy baselineCIVET pipelineEndocannabinoid signalingMAIN OUTCOMECortical thicknessAdolescent brain developmentAnimal studiesSignificant associationBrain developmentPrefrontal cortexAdolescent brainBehavioral effectsCortexThe effects of fatty acid amide hydrolase inhibition and monoacylglycerol lipase inhibition on habit formation in mice
Gianessi CA, Groman SM, Taylor JR. The effects of fatty acid amide hydrolase inhibition and monoacylglycerol lipase inhibition on habit formation in mice. European Journal Of Neuroscience 2021, 55: 922-938. PMID: 33506530, PMCID: PMC10370500, DOI: 10.1111/ejn.15129.Peer-Reviewed Original ResearchConceptsFatty acid amide hydrolase inhibitionResponse rateHydrolase inhibitionCannabinoid receptor type 1Aberrant habit formationInhibition of FAAHMonoacylglycerol lipase inhibitionInconsistent dose-response relationshipRole of CB1RSubstance use disordersEndocannabinoid ligand anandamideReceptor type 1Dose-response relationshipContingency degradation procedureEndocannabinoid signalingClinical utilityAM251Use disordersType 1Behavioral effectsPharmacological compoundsDose-response experimentsMiceLipase inhibitionAnandamide
2017
Role of Striatal Direct Pathway 2-Arachidonoylglycerol Signaling in Sociability and Repetitive Behavior
Shonesy BC, Parrish WP, Haddad HK, Stephenson JR, Báldi R, Bluett RJ, Marks CR, Centanni SW, Folkes OM, Spiess K, Augustin SM, Mackie K, Lovinger DM, Winder DG, Patel S, Colbran RJ. Role of Striatal Direct Pathway 2-Arachidonoylglycerol Signaling in Sociability and Repetitive Behavior. Biological Psychiatry 2017, 84: 304-315. PMID: 29458998, PMCID: PMC6023784, DOI: 10.1016/j.biopsych.2017.11.036.Peer-Reviewed Original ResearchConceptsDirect pathway medium spiny neuronsMedium spiny neuronsDorsal striatumIndirect pathway medium spiny neuronsReceptor-expressing medium spiny neuronsStriatal direct pathwayAutism spectrum disorderDiacylglycerol lipase αConditional knockout miceSpectrum disorderGlutamatergic driveSpiny neuronsEndocannabinoid signalingRepetitive groomingSynaptic transmissionMouse modelRepetitive behaviorsKnockout miceExcessive groomingDopamine DBrain regionsStriatumVentral striatumBehavioral effectsTargeted deletionEndocannabinoid Signaling in the Control of Social Behavior
Wei D, Allsop S, Tye K, Piomelli D. Endocannabinoid Signaling in the Control of Social Behavior. Trends In Neurosciences 2017, 40: 385-396. PMID: 28554687, PMCID: PMC5699224, DOI: 10.1016/j.tins.2017.04.005.Peer-Reviewed Original ResearchConceptsSocial behaviorEndocannabinoid signalingG-protein-coupled cannabinoid receptorsEndocannabinoid signaling systemComplex social groupsSocial anxietySocial impairmentNeural basisSocial rewardsCannabinoid receptorsNeural processesEndocannabinoidAnimal modelsEmergent insightsAnxietyRewardBehaviorSocial groupsImpairmentBrainSignaling systemAgonistsMammalian speciesReceptors
2016
Individual differences in frontolimbic circuitry and anxiety emerge with adolescent changes in endocannabinoid signaling across species
Gee DG, Fetcho RN, Jing D, Li A, Glatt CE, Drysdale AT, Cohen AO, Dellarco DV, Yang RR, Dale AM, Jernigan TL, Lee FS, Casey BJ, Jernigan T, San Diego U, McCabe C, San Diego U, Chang L, Hawaii U, Akshoomoff N, San Diego U, Newman E, San Diego U, Dale A, San Diego U, Core M, Ernst T, Hawaii U, Dale A, San Diego U, Van Zijl P, Kuperman J, San Diego U, Murray S, Bloss C, Schork N, Appelbaum M, San Diego U, Gamst A, San Diego U, Thompson W, San Diego U, Bartsch H, San Diego U, Jernigan T, Dale A, Akshoomoff N, Chang L, Ernst T, Keating B, Amaral D, Sowell E, Kaufmann W, Van Zijl P, Mostofsky S, Casey B, Ruberry E, Powers A, Rosen B, Kenet T, Frazier J, Kennedy D, University Y, Gruen J. Individual differences in frontolimbic circuitry and anxiety emerge with adolescent changes in endocannabinoid signaling across species. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 4500-4505. PMID: 27001846, PMCID: PMC4843434, DOI: 10.1073/pnas.1600013113.Peer-Reviewed Original ResearchConceptsFatty acid amide hydrolaseAnxiety-related behaviorGene expressionFrontolimbic circuitryEndocannabinoid signalingAnxiety disordersNeural circuit maturationPostnatal day 45Phenotypic differencesFrontoamygdala circuitryAnandamide levelsGenetic effectsAEA levelsBiological stateIndividual differencesCircuit maturationGenetic alterationsFAAH genotypeMouse modelDevelopmental neurobiologyLevels of analysisAdolescent changesDevelopmental windowAmide hydrolaseBrain circuitry
2013
Antibodies to cannabinoid type 1 receptor co‐react with stomatin‐like protein 2 in mouse brain mitochondria
Morozov YM, Dominguez MH, Varela L, Shanabrough M, Koch M, Horvath TL, Rakic P. Antibodies to cannabinoid type 1 receptor co‐react with stomatin‐like protein 2 in mouse brain mitochondria. European Journal Of Neuroscience 2013, 38: 2341-2348. PMID: 23617247, PMCID: PMC3902808, DOI: 10.1111/ejn.12237.Peer-Reviewed Original ResearchConceptsStomatin-like protein 2Type 1 receptorPresence of CB1Protein 2Anti-CB1 antibodySynthetic cannabinoid WINMouse brain mitochondriaCerebral cortexEndocannabinoid signalingBrain cellsCannabinoid WINNeuronal mitochondriaBrain mitochondriaAntibodiesMitochondrial functionCB1Polyclonal antibodiesCortexMitochondrial preparationsSerumReceptors
2007
Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity
Berghuis P, Rajnicek AM, Morozov YM, Ross RA, Mulder J, Urbán G, Monory K, Marsicano G, Matteoli M, Canty A, Irving AJ, Katona I, Yanagawa Y, Rakic P, Lutz B, Mackie K, Harkany T. Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity. Science 2007, 316: 1212-1216. PMID: 17525344, DOI: 10.1126/science.1137406.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCannabinoid Receptor ModulatorsCell MovementCells, CulturedCerebral CortexEndocannabinoidsgamma-Aminobutyric AcidGrowth ConesIn Situ HybridizationInterneuronsMiceMice, Inbred C57BLMicroscopy, ConfocalRatsRats, Sprague-DawleyReceptor, Cannabinoid, CB1Signal TransductionStem CellsSynapsesUltrasonographyXenopus laevisXenopus ProteinsConceptsAxonal growth conesGABAergic interneuronsEndocannabinoid signalingXenopus laevis spinal neuronsCortical GABAergic interneuronsCentral nervous system developmentGrowth conesAxon guidance cuesSpinal neuronsNervous system developmentCannabinoid receptorsLate gestationNeuronal connectivityRodent cortexInterneuronsEndocannabinoidsGuidance cuesTarget selectionSignalingGestationCortexSynaptogenesisNeuronsBrainReceptors
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply