2020
Shootin‐1 is required for nervous system development in zebrafish
Emerson S, Stergas H, Bupp‐Chickering S, Ebert A. Shootin‐1 is required for nervous system development in zebrafish. Developmental Dynamics 2020, 249: 1285-1295. PMID: 32406957, DOI: 10.1002/dvdy.194.Peer-Reviewed Original ResearchConceptsNervous system developmentLoss of repressionShootin-1Peripheral nervous systemRepulsive axon guidance cuesDownstream signaling mechanismsPhenotypic consequencesNervous systemAxon guidance cuesNeuronal polarityPatterning defectsMicroarray screeningRetinal pigment epitheliumCell migrationGuidance cuesSignaling mechanismsFunctional roleImpaired migrationPLXNA2RepressionPigment epitheliumOptic vesiclePathfinding errorsZebrafishRegulation
2017
Protein Tyrosine Phosphatase δ Mediates the Sema3A-Induced Cortical Basal Dendritic Arborization through the Activation of Fyn Tyrosine Kinase
Nakamura F, Okada T, Shishikura M, Uetani N, Taniguchi M, Yagi T, Iwakura Y, Ohshima T, Goshima Y, Strittmatter SM. Protein Tyrosine Phosphatase δ Mediates the Sema3A-Induced Cortical Basal Dendritic Arborization through the Activation of Fyn Tyrosine Kinase. Journal Of Neuroscience 2017, 37: 7125-7139. PMID: 28637841, PMCID: PMC6705738, DOI: 10.1523/jneurosci.2519-16.2017.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedCerebral CortexDendritesEnzyme ActivationFemaleGene Expression Regulation, EnzymologicMaleMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicNeuronal PlasticityProtein-Tyrosine KinasesProto-Oncogene Proteins c-fynReceptor-Like Protein Tyrosine Phosphatases, Class 2Semaphorin-3AConceptsCortical dendritic growthBasal dendritesCultured dorsal root ganglion neuronsCortical layer V neuronsPrimary cultured dorsal root ganglion (DRG) neuronsDorsal root ganglion neuronsWild-type cortical neuronsBasal dendritic arborizationLayer V neuronsAxon guidanceDouble heterozygous mutantsSpecific guidance cuesProtein tyrosine phosphatase δAxon guidance cuesPoor arborizationV neuronsGuidance cuesGanglion neuronsDendritic arborizationCortical neuronsMutant miceSemaphorin 3ASrc kinaseActivation of FynGrowth cone collapse response
2013
EBI2 guides osteoclast precursors to bone niches and regulates osteoclastogenesis and bone mass homeostasis. (P5099)
Nevius E, Horowitz M, Insogna K, Ishii M, Pereira J. EBI2 guides osteoclast precursors to bone niches and regulates osteoclastogenesis and bone mass homeostasis. (P5099). The Journal Of Immunology 2013, 190: 129.14-129.14. DOI: 10.4049/jimmunol.190.supp.129.14.Peer-Reviewed Original ResearchOsteoclast precursorsMature osteoclastsBone nicheBone surfaceBone lining cellsEstrogen deficiencyBone marrow nicheBone disordersEBI2Osteoclast differentiationBone mass homeostasisMonocytic precursorsOsteoclastsMarrow nicheBone outgrowthsGuidance cuesSynthesis enzymesHomeostasisDifferentiationCH25HOsteoporosisCYP7B1OsteoclastogenesisMice
2009
Axon Growth and Guidance: Receptor Regulation and Signal Transduction
O'Donnell M, Chance R, Bashaw G. Axon Growth and Guidance: Receptor Regulation and Signal Transduction. Annual Review Of Neuroscience 2009, 32: 383-412. PMID: 19400716, PMCID: PMC4765433, DOI: 10.1146/annurev.neuro.051508.135614.Peer-Reviewed Original ResearchConceptsNeural developmental disordersReceptor regulationGrowth cone cytoskeletonAxon growthGrowth cone guidanceSignal transductionGuidance receptorsPathway functionWiring specificityRegulated actionGuidance cuesNervous systemNeuronal receptorsRegulationReceptorsRecent advancesCytoskeletonTransductionConsiderable progressDevelopmental disordersGrowthTemporal distributionMechanismConnectivity patternsFamilyDifferentiation of Human Neural Progenitor Cells on PLGA Microfibers
Hwang C, Kim S, Kim J, Khademhosseini A, Lee S. Differentiation of Human Neural Progenitor Cells on PLGA Microfibers. 2009, 1: 1-2. DOI: 10.1109/nebc.2009.4967758.Peer-Reviewed Original ResearchHuman embryonic stem cellsNeural progenitor cellsEmbryoid bodiesMicrofluidic spinning systemPLGA microfibersNeural tissue regenerationEmbryonic stem cellsNeural tissue engineeringProgenitor cellsHuman neural progenitor cellsTissue engineeringNeuronal protein expressionNeural progenitor markersGlial fibrillary acidic proteinMicrofibersTissue regenerationNascent fibersPLGA fibersNeural progenitorsDifferentiated cellsCell differentiationProgenitor markersStem cellsGuidance cuesProtein expression
2008
A novel role for anosmin‐1 in the adhesion and migration of oligodendrocyte precursors
Bribián A, Esteban P, Clemente D, Soussi‐Yanicostas N, Thomas J, Zalc B, de Castro F. A novel role for anosmin‐1 in the adhesion and migration of oligodendrocyte precursors. Developmental Neurobiology 2008, 68: 1503-1516. PMID: 18814310, DOI: 10.1002/dneu.20678.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAntibodiesCell AdhesionCell MovementCells, CulturedChemotactic FactorsCollagenCricetinaeCricetulusEmbryo, MammalianExtracellular Matrix ProteinsFibroblast Growth Factor 2GangliosidesGene Expression Regulation, DevelopmentalMiceNerve Tissue ProteinsOligodendrogliaReceptor, Fibroblast Growth Factor, Type 1RetinaRNA, MessengerStem CellsConceptsOptic nerveOligodendrocyte precursorsEntire optic nerveEmbryonic optic nerveRetinal ganglion cellsAnosmin-1Ganglion cellsPreoptic areaCell adhesion moleculeOPC migrationGrowth factorAdhesion moleculesFGF-2Novel roleGuidance cuesFGFR1Soluble formImpairsCellsECM moleculesNovel effectNerveBlockadeEmbryonic stagesAxons
2007
Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity
Berghuis P, Rajnicek AM, Morozov YM, Ross RA, Mulder J, Urbán G, Monory K, Marsicano G, Matteoli M, Canty A, Irving AJ, Katona I, Yanagawa Y, Rakic P, Lutz B, Mackie K, Harkany T. Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity. Science 2007, 316: 1212-1216. PMID: 17525344, DOI: 10.1126/science.1137406.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCannabinoid Receptor ModulatorsCell MovementCells, CulturedCerebral CortexEndocannabinoidsgamma-Aminobutyric AcidGrowth ConesIn Situ HybridizationInterneuronsMiceMice, Inbred C57BLMicroscopy, ConfocalRatsRats, Sprague-DawleyReceptor, Cannabinoid, CB1Signal TransductionStem CellsSynapsesUltrasonographyXenopus laevisXenopus ProteinsConceptsAxonal growth conesGABAergic interneuronsEndocannabinoid signalingXenopus laevis spinal neuronsCortical GABAergic interneuronsCentral nervous system developmentGrowth conesAxon guidance cuesSpinal neuronsNervous system developmentCannabinoid receptorsLate gestationNeuronal connectivityRodent cortexInterneuronsEndocannabinoidsGuidance cuesTarget selectionSignalingGestationCortexSynaptogenesisNeuronsBrainReceptors
2006
RanBPM Contributes to Semaphorin3A Signaling through Plexin-A Receptors
Togashi H, Schmidt EF, Strittmatter SM. RanBPM Contributes to Semaphorin3A Signaling through Plexin-A Receptors. Journal Of Neuroscience 2006, 26: 4961-4969. PMID: 16672672, PMCID: PMC2846289, DOI: 10.1523/jneurosci.0704-06.2006.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCell Adhesion MoleculesCell DeathCell SizeCells, CulturedChick EmbryoCloning, MolecularCricetinaeCricetulusCytoskeletal ProteinsDose-Response Relationship, DrugDrug InteractionsEnzyme InhibitorsGanglia, SpinalGene ExpressionGreen Fluorescent ProteinsHumansImmunoprecipitationIn Situ Nick-End LabelingNerve Tissue ProteinsNeuritesNeuronsNeuropilin-1Nuclear Proteinsran GTP-Binding ProteinSemaphorin-3ASignal TransductionTranscription Factor AP-1TransfectionTwo-Hybrid System TechniquesConceptsPlexin-A1Collapsin response mediator proteinsNervous system developmentReceptor complex consistingSignal transductionRanBPMMediator proteinsMicrotubule functionCell spreadingComplex consistingAxonal guidanceNeuronal cellsAxonal guidance cuesProteinGuidance cuesPlexinsAxonal outgrowthExpressionSema3ATransductionReceptorsDomainOverexpressionNeuropilinsSystem development
2005
Evidence for an Instructive Role of Retinal Activity in Retinotopic Map Refinement in the Superior Colliculus of the Mouse
Chandrasekaran AR, Plas DT, Gonzalez E, Crair MC. Evidence for an Instructive Role of Retinal Activity in Retinotopic Map Refinement in the Superior Colliculus of the Mouse. Journal Of Neuroscience 2005, 25: 6929-6938. PMID: 16033903, PMCID: PMC6725341, DOI: 10.1523/jneurosci.1470-05.2005.Peer-Reviewed Original ResearchConceptsRetinotopic map refinementRetinal activitySuperior colliculusActivity-dependent factorsNasal-temporal axisSpontaneous retinal activityWild-type miceActivity-dependent cuesActivity-dependent mechanismsRetinotopic map developmentAxon guidance cuesGuidance cuesMolecular mechanismsRetinal wavesPharmacological interventionsMouse modelRetinotopic mapColliculusSame animalsMicePreferential roleReceptive fieldsPhysiological methodsInstructive roleMap refinement
2004
Control of axonophilic migration of oligodendrocyte precursor cells by Eph-ephrin interaction.
Prestoz L, Chatzopoulou E, Lemkine G, Spassky N, Lebras B, Kagawa T, Ikenaka K, Zalc B, Thomas JL. Control of axonophilic migration of oligodendrocyte precursor cells by Eph-ephrin interaction. Neuron Glia Biology 2004, 1: 73-83. PMID: 18634608, DOI: 10.1017/s1740925x04000109.Peer-Reviewed Original Research
2003
Do Filopodia Enable the Growth Cone to Find Its Way?
Koleske AJ. Do Filopodia Enable the Growth Cone to Find Its Way? Science Signaling 2003, 2003: pe20. PMID: 12759482, DOI: 10.1126/stke.2003.183.pe20.Peer-Reviewed Original ResearchConceptsEna/VASP proteinsVASP proteinsEna/VASP family proteinsGrowth conesActin filament elongationNeuronal growth conesGrowth cone filopodiaCaenorhabditis elegansFamily proteinsFilament elongationAxon guidanceSensory organsFilopodiaGuidance cuesNonneuronal cellsProteinDrosophilaElegansLamellipodiaNervous systemChapter 267 Semaphorins and their Receptors in Vertebrates and Invertebrates
Schmidt E, Togashi H, Strittmatter S. Chapter 267 Semaphorins and their Receptors in Vertebrates and Invertebrates. 2003, 877-881. DOI: 10.1016/b978-012124546-7/50628-8.Peer-Reviewed Original ResearchFunctions of semaphorinsNervous system developmentMalignant lung cellsCentral nervous system developmentVertebrate semaphorinsNon-neuronal cellsCytoplasmic localizationAdult tissuesSemaphorin familyExpression of Sema4DWidespread expressionSemaphorinsOlfactory neuronsGuidance cuesCertain receptorsGrowth conesT lymphocyte activationRetraction of axonsAntagonistic activityReduced levelsCardiovascular abnormalitiesCertain neuronsAttractantsImmune systemLung cells
2002
Directional Guidance of Oligodendroglial Migration by Class 3 Semaphorins and Netrin-1
Spassky N, de Castro F, Le Bras B, Heydon K, Quéraud-LeSaux F, Bloch-Gallego E, Chédotal A, Zalc B, Thomas J. Directional Guidance of Oligodendroglial Migration by Class 3 Semaphorins and Netrin-1. Journal Of Neuroscience 2002, 22: 5992-6004. PMID: 12122061, PMCID: PMC6757938, DOI: 10.1523/jneurosci.22-14-05992.2002.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Adhesion MoleculesCell DivisionCell LineCell LineageCell MovementChemotaxisCulture TechniquesDCC ReceptorGlycoproteinsHumansMembrane ProteinsMiceNerve Growth FactorsNerve Tissue ProteinsNetrin ReceptorsNetrin-1Neuropilin-1OligodendrogliaOptic NerveReceptors, Cell SurfaceSemaphorin-3AStem CellsTumor Suppressor ProteinsConceptsOligodendrocyte precursor cellsEmbryonic optic nerveMigration of OPCsOptic nerveNetrin-1Sema 3ANetrin-1 receptorWhite matter tractsSema 3FMyelin-forming cellsColorectal cancerClass 3 semaphorinsLocalization of cellsNerveChemotactic effectNeuropilin-1Multiple fociFunctional migrationPrecursor cellsNetrin familyOligodendroglial migrationSemaphorinsNeural tubeDual effectGuidance cues
2001
Telencephalic origin of human thalamic GABAergic neurons
Letinic K, Rakic P. Telencephalic origin of human thalamic GABAergic neurons. Nature Neuroscience 2001, 4: 931-936. PMID: 11528425, DOI: 10.1038/nn0901-931.Peer-Reviewed Original ResearchConceptsNon-primate mammalian speciesHomeodomain-containing proteinMigratory pathwaysThalamic association nucleiVital dye labelingEvolutionary expansionMammalian speciesAssociation nucleiTelencephalic cellsRodent embryosGuidance cuesChemorepulsive cuesMigration assaysOrganotypic slice culturesDye labelingProliferative zoneNon-human primatesGABAergic neuronsDiencephalic neuronsPathwayDorsal thalamusTelencephalic originGanglionic eminenceSlice culturesNeurons
2000
Molecular basis of semaphorin‐mediated axon guidance
Nakamura F, Kalb R, Strittmatter S. Molecular basis of semaphorin‐mediated axon guidance. Developmental Neurobiology 2000, 44: 219-229. PMID: 10934324, DOI: 10.1002/1097-4695(200008)44:2<219::aid-neu11>3.0.co;2-w.Peer-Reviewed Original ResearchConceptsGrowth cone collapseSemaphorin guidance cuesMonomeric G proteinsSignal transduction cascadeGuidance cuesAxon guidance eventsCone collapseGrowth cone motilityCaenorhabditis elegansActin cytoskeletonTransmembrane proteinFilopodial tipsNeuropilin-1Transduction cascadeMolecular basisComplex interactsIntracellular domainPrototypic memberGrowth cone turningRac1 activityAxon guidanceG proteinsRepulsive guidance cuesNeuronal proteinsAxonal guidanceSubstrate–cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance
Suter D, Forscher P. Substrate–cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. Developmental Neurobiology 2000, 44: 97-113. PMID: 10934315, DOI: 10.1002/1097-4695(200008)44:2<97::aid-neu2>3.0.co;2-u.Peer-Reviewed Original ResearchConceptsGrowth cone motilityCone motilityGuidance cuesGrowth conesDifferent guidance cuesDynamic cytoskeletonCell adhesion moleculeSignal transducerAxon guidanceMolecular componentsCytoskeletonMotile structuresMotility deviceAppropriate target cellsDifferent functionsRespective receptorsAdhesion moleculesProteinAxonal growthMotilityGrowth cone movementTarget cellsNeuronal processesRecent evidenceCone movementTransduction of Inhibitory Signals by the Axonal Growth Cone
Wang L, Fournier A, Nakamura F, Takahashi T, Kalb R, Strittmatter S. Transduction of Inhibitory Signals by the Axonal Growth Cone. Contemporary Neuroscience 2000, 131-153. DOI: 10.1007/978-1-59259-200-5_6.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply